Tumor Biology

, Volume 36, Issue 10, pp 7557–7568 | Cite as

Orthotopic inflammation-related pancreatic carcinogenesis in a wild-type mouse induced by combined application of caerulein and dimethylbenzanthracene

  • Chen Liang
  • Zhen Wang
  • Li Wu
  • Chen Wang
  • Bao-Hua Yu
  • Xiu-Zhong Yao
  • Xiao-Lin Wang
  • Ying-Yi Li
Research Article


Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies, with a poor long-term prognosis, and effective therapeutic options are lacking. Observing the dynamics of the pathogenesis of pancreatic intraepithelial neoplasia (PanIN) and PDAC in tumor models can facilitate understanding of the molecular mechanisms involved in early PDAC. Furthermore, it can compensate for the research limitations associated with analyzing clinical specimens of late-stage PDAC. In this study, we orthotopically treated the pancreas with dimethylbenzanthracene (DMBA) combined with caerulein in wild-type C57BL/6 J mice to induce inflammation-related pancreatic carcinogenesis. We observed that DMBA and caerulein treatment induced a chronic consumptive disease, which caused a decrease in the relative body and pancreas weights, diminishing the health status of the mice and enhancing the inflammation-related histological changes. Moreover, mid-dose and high-frequency treatment with caerulein caused prolonged inflammatory damage to the pancreas and contributed to a permissive environment for the development of PDAC. CXCL12/CXCR4, CCL2/CCR2, and several cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were upregulated in the tumor tissue of DMBA and caerulein-induced PDAC mice. This orthotopic mouse pancreatic carcinogenesis model mimic human disease because it reproduces a spectrum of pathological changes observed in human PDAC, ranging from inflammatory lesions to pancreatic intraepithelial neoplasia. Thus, this mouse model may improve the understanding of molecular mechanisms underlying the injury-inflammation-cancer pathway in the early stages of pancreatic carcinogenesis.


DMBA Caerulein Pancreatitis Pancreatic cancer 



This work was supported in part by the National Science Foundation of China (NSFC) (30973476, 81272727, and 81472223), and the Shanghai Committee of Science and Technology (12DZ2260100).

The authors would like to thank Dr. H.Y. Gu, P. Zhang, Y.H. Xin, and Y. Cao of the Cancer Research Institute, Fudan University Shanghai Cancer Center and C.-X. Fu of the Siemens Shenzhen Magnetic Resonance Ltd., Siemens MRI Center for their technical support.

Open access

This article is distributed under the terms of the Creative Commons Attribution License, which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Conflicts of interest



  1. 1.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.CrossRefPubMedGoogle Scholar
  2. 2.
    The LO. Pancreatic cancer in the spotlight. Lancet Oncol. 2014;15(3):241.CrossRefGoogle Scholar
  3. 3.
    Seufferlein T, Bachet JB, Van Cutsem E, Rougier P, Group EGW. Pancreatic adenocarcinoma: ESMO-ESDO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23 Suppl 7:vii33–40.CrossRefPubMedGoogle Scholar
  4. 4.
    Hruban RH, Adsay NV, Albores-Saavedra J, Anver MR, Biankin AV, Boivin GP, et al. Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res. 2006;66(1):95–106.CrossRefPubMedGoogle Scholar
  5. 5.
    Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. 2007;121(11):2373–80.CrossRefPubMedGoogle Scholar
  6. 6.
    Lowenfels AB, Maisonneuve P, Cavallini G, Ammann RW, Lankisch PG, Andersen JR, et al. Pancreatitis and the risk of pancreatic cancer. International pancreatitis study group. N Engl J Med. 1993;328(20):1433–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Guerra C, Schuhmacher AJ, Canamero M, Grippo PJ, Verdaguer L, Perez-Gallego L, et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell. 2007;11(3):291–302.CrossRefPubMedGoogle Scholar
  8. 8.
    Ueda J, Tanaka M, Ohtsuka T, Tokunaga S, Shimosegawa T. Research committee of intractable diseases of the P. Surgery for chronic pancreatitis decreases the risk for pancreatic cancer: a multicenter retrospective analysis. Surgery. 2013;153(3):357–64.CrossRefPubMedGoogle Scholar
  9. 9.
    Roshani R, McCarthy F, Hagemann T. Inflammatory cytokines in human pancreatic cancer. Cancer Lett. 2014;345(2):157–63.CrossRefPubMedGoogle Scholar
  10. 10.
    De La OJ, Emerson LL, Goodman JL, Froebe SC, Illum BE, Curtis AB, et al. Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc Natl Acad Sci U S A. 2008;105(48):18907–12.CrossRefGoogle Scholar
  11. 11.
    Zhu L, Shi G, Schmidt CM, Hruban RH, Konieczny SF. Acinar cells contribute to the molecular heterogeneity of pancreatic intraepithelial neoplasia. Am J Pathol. 2007;171(1):263–73.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Khalaileh A, Dreazen A, Khatib A, Apel R, Swisa A, Kidess-Bassir N, et al. Phosphorylation of ribosomal protein S6 attenuates DNA damage and tumor suppression during development of pancreatic cancer. Cancer Res. 2013;73(6):1811–20.CrossRefPubMedGoogle Scholar
  13. 13.
    Kimura K, Satoh K, Kanno A, Hamada S, Hirota M, Endoh M, et al. Activation of Notch signaling in tumorigenesis of experimental pancreatic cancer induced by dimethylbenzanthracene in mice. Cancer Sci. 2007;98(2):155–62.CrossRefPubMedGoogle Scholar
  14. 14.
    Colvin EK, Susanto JM, Kench JG, Ong VN, Mawson A, Pinese M, et al. Retinoid signaling in pancreatic cancer, injury and regeneration. PLoS One. 2011;6(12), e29075.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Osvaldt AB, Wendt LR, Bersch VP, Backes AN, de Cassia ASR, Edelweiss MI, et al. Pancreatic intraepithelial neoplasia and ductal adenocarcinoma induced by DMBA in mice. Surgery. 2006;140(5):803–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Ardito CM, Gruner BM, Takeuchi KK, Lubeseder-Martellato C, Teichmann N, Mazur PK, et al. EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell. 2012;22(3):304–17.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shimizu T, Shiratori K, Sawada T, Kobayashi M, Hayashi N, Saotome H, et al. Recombinant human interleukin-11 decreases severity of acute necrotizing pancreatitis in mice. Pancreas. 2000;21(2):134–40.CrossRefPubMedGoogle Scholar
  18. 18.
    Bai H, Li H, Zhang W, Matkowskyj KA, Liao J, Srivastava SK, et al. Inhibition of chronic pancreatitis and pancreatic intraepithelial neoplasia (PanIN) by capsaicin in LSL-KrasG12D/Pdx1-Cre mice. Carcinogenesis. 2011;32(11):1689–96.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Huynh AS, Abrahams DF, Torres MS, Baldwin MK, Gillies RJ, Morse DL. Development of an orthotopic human pancreatic cancer xenograft model using ultrasound guided injection of cells. PLoS One. 2011;6(5), e20330.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Olive KP, Tuveson DA. The use of targeted mouse models for preclinical testing of novel cancer therapeutics. Clin Cancer Res. 2006;12(18):5277–87.CrossRefPubMedGoogle Scholar
  21. 21.
    Becher OJ, Holland EC. Genetically engineered models have advantages over xenografts for preclinical studies. Cancer Res. 2006;66(7):3355–8. discussion 3358–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Herreros-Villanueva M, Hijona E, Cosme A, Bujanda L. Mouse models of pancreatic cancer. World J Gastroenterol. 2012;18(12):1286–94.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4(6):437–50.CrossRefPubMedGoogle Scholar
  24. 24.
    Rivera JA, Graeme-Cook F, Werner J, Z’Graggen K, Rustgi AK, Rattner DW, et al. A rat model of pancreatic ductal adenocarcinoma: targeting chemical carcinogens. Surgery. 1997;122(1):82–90.CrossRefPubMedGoogle Scholar
  25. 25.
    Wendt LR, Osvaldt AB, Bersch VP, Schumacher Rde C, Edelweiss MI, Rohde L. Pancreatic intraepithelial neoplasia and ductal adenocarcinoma induced by DMBA in mice: effects of alcohol and caffeine. Acta Cir Bras. 2007;22(3):202–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Ye W, Lagergren J, Weiderpass E, Nyren O, Adami HO, Ekbom A. Alcohol abuse and the risk of pancreatic cancer. Gut. 2002;51(2):236–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Farrow DC, Davis S. Risk of pancreatic cancer in relation to medical history and the use of tobacco, alcohol and coffee. Int J Cancer. 1990;45(5):816–20.CrossRefPubMedGoogle Scholar
  28. 28.
    Singh M, Simsek H. Ethanol and the pancreas. Current status. Gastroenterology. 1990;98(4):1051–62.CrossRefPubMedGoogle Scholar
  29. 29.
    Dawson DW, Hertzer K, Moro A, Donald G, Chang HH, Go VL, et al. High-fat, high-calorie diet promotes early pancreatic neoplasia in the conditional KrasG12D mouse model. Cancer Prev Res (Phila). 2013;6(10):1064–73.CrossRefGoogle Scholar
  30. 30.
    Mansi C, Mela GS, Ceppa P, Sciaba L, Barreca A, Pasini D, et al. Trophic response and morphological changes in pancreas of caerulein treated rats: dose and time dependent effects. Ital J Gastroenterol. 1990;22(2):59–63.PubMedGoogle Scholar
  31. 31.
    Nagy I, Laszik Z, Mohacsi G. Dose-dependent pancreatotrophic effect of cholecystokinin-octapeptide in the rat: the influence of starvation. Pharmacol Res. 1998;37(4):309–19.CrossRefPubMedGoogle Scholar
  32. 32.
    Aghdassi AA, Mayerle J, Christochowitz S, Weiss FU, Sendler M, Lerch MM. Animal models for investigating chronic pancreatitis. Fibrogenesis Tissue Repair. 2011;4(1):26.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jensen JN, Cameron E, Garay MV, Starkey TW, Gianani R, Jensen J. Recapitulation of elements of embryonic development in adult mouse pancreatic regeneration. Gastroenterology. 2005;128(3):728–41.CrossRefPubMedGoogle Scholar
  34. 34.
    Morris JP, Cano DA, Sekine S, Wang SC, Hebrok M. Beta-catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice. J Clin Invest. 2010;120(2):508–20.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kolodziejczyk E, Wejnarska K, Dadalski M, Kierkus J, Ryzko J, Oracz G. The nutritional status and factors contributing to malnutrition in children with chronic pancreatitis. Pancreatology. 2014;14(4):275–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Sah RP, Dudeja V, Dawra RK, Saluja AK. Cerulein-induced chronic pancreatitis does not require intra-acinar activation of trypsinogen in mice. Gastroenterology. 2013;144(5):1076–85.e2.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Braganza JM, Lee SH, McCloy RF, McMahon MJ. Chronic pancreatitis. Lancet. 2011;377(9772):1184–97.CrossRefPubMedGoogle Scholar
  38. 38.
    Yasuda T, Takeyama Y, Ueda T, Takase K, Nishikawa J, Kuroda Y. Splenic atrophy in experimental severe acute pancreatitis. Pancreas. 2002;24(4):365–72.CrossRefPubMedGoogle Scholar
  39. 39.
    Fearon DT. The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance. Cancer Immunol Res. 2014;2(3):187–93.CrossRefPubMedGoogle Scholar
  40. 40.
    Garbe AI, Vermeer B, Gamrekelashvili J, von Wasielewski R, Greten FR, Westendorf AM, et al. Genetically induced pancreatic adenocarcinoma is highly immunogenic and causes spontaneous tumor-specific immune responses. Cancer Res. 2006;66(1):508–16.CrossRefPubMedGoogle Scholar
  41. 41.
    Dima SO, Tanase C, Albulescu R, Herlea V, Chivu-Economescu M, Purnichescu-Purtan R, et al. An exploratory study of inflammatory cytokines as prognostic biomarkers in patients with ductal pancreatic adenocarcinoma. Pancreas. 2012;41(7):1001–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Jura N, Archer H, Bar-Sagi D. Chronic pancreatitis, pancreatic adenocarcinoma and the black box in-between. Cell Res. 2005;15(1):72–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Greer JB, Whitcomb DC. Inflammation and pancreatic cancer: an evidence-based review. Curr Opin Pharmacol. 2009;9(4):411–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Marrache F, Tu SP, Bhagat G, Pendyala S, Osterreicher CH, Gordon S, et al. Overexpression of interleukin-1beta in the murine pancreas results in chronic pancreatitis. Gastroenterology. 2008;135(4):1277–87.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Momi N, Kaur S, Krishn SR, Batra SK. Discovering the route from inflammation to pancreatic cancer. Minerva Gastroenterol Dietol. 2012;58(4):283–97.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Guerra C, Collado M, Navas C, Schuhmacher AJ, Hernandez-Porras I, Canamero M, et al. Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell. 2011;19(6):728–39.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Dibra D, Mishra L, Li S. Molecular mechanisms of oncogene-induced inflammation and inflammation-sustained oncogene activation in gastrointestinal tumors: an under-appreciated symbiotic relationship. Biochim Biophys Acta. 2014;1846(1):152–60.PubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Chen Liang
    • 1
    • 2
  • Zhen Wang
    • 1
    • 2
  • Li Wu
    • 3
  • Chen Wang
    • 1
    • 2
  • Bao-Hua Yu
    • 2
    • 4
  • Xiu-Zhong Yao
    • 3
  • Xiao-Lin Wang
    • 3
  • Ying-Yi Li
    • 1
    • 2
  1. 1.Cancer Research InstituteFudan University Shanghai Cancer CenterShanghaiChina
  2. 2.Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
  3. 3.Department of ImageFudan University Shanghai Zhongshan Hospital, Shanghai Medical CollegeShanghaiChina
  4. 4.Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina

Personalised recommendations