Skip to main content

Advertisement

Log in

Assessment of promoter methylation and expression of SIX2 as a diagnostic and prognostic biomarker in Wilms’ tumor

  • Research Article
  • Published:
Tumor Biology

Abstract

This study was designed to evaluate the utility of expression and DNA methylation patterns of the sine oculis homeobox homolog 2 (SIX2) gene in early diagnosis and prognosis of Wilms’ tumor (WT). Methylation-specific polymerase chain reaction (MSP), real-time quantitative polymerase chain reaction (qRT-PCR), receiver operating characteristic (ROC), and survival curve analyses were utilized to measure the expression and DNA methylation patterns of SIX2 in a cohort of WT tissues, with a view to assessing their diagnostic and prognostic value. Relative expression of SIX2 mRNA was higher, while the promoter methylation level was lower in the WT than control group (P < 0.05) and closely associated with poor survival prognosis of WT children (P < 0.05). Increased expression and decreased methylation of SIX2 were correlated with increasing tumor size, clinical stage, vascular invasion, and unfavorable histological differentiation (P < 0.05). ROC curve analysis showed areas under the curve (AUCs) of 0.579 for methylation and 0.917 for expression in WT venous blood, indicating higher diagnostic yield of preoperative SIX2 expression. The preoperative venous blood SIX2 expression level serves as an underlying biomarker for early diagnosis of WT. SIX2 overexpression and concomitantly decreased promoter methylation are significantly associated with poor survival of WT children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li CM, Guo M, Borczuk A, et al. Gene expression in Wilms tumor mimics the earliest committed stage in the metanephric mesenchymal-epithelial transition. Am J Pathol. 2002;160:2181–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Davidoff AM. Wilms’ tumor. Curr Opin Pediatr. 2009;21:357–64.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kumar JP. The sine oculis homeobox (SIX) family of transcription factors as regulators of development and disease. Cell Mol Life Sci. 2009;66:565–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. He G, Tavella S, Hanley KP, et al. Inactivation of SIX2 in mouse identifies a novel genetic mechanism controlling development and growth of the cranial base. Dev Biol. 2010;344:720–30.

    Article  CAS  PubMed  Google Scholar 

  5. Self M, Geng X, Oliver G. SIX2 activity is required for the formation of the mammalian pyloric sphincter. Dev Biol. 2009;334:409–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anderson AM, Weasner BM, Weasner BP, et al. Dual transcriptional activities of SIX proteins define their roles in normal and ectopic eye development. Development. 2012;139:991–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Diaz-Mendoza MJ, Lorda-Diez CI, Montero JA, et al. Reelin/DAB-1 signaling in the embryonic limb regulates the chondrogenic differentiation of digit mesodermal progenitors. J Cell Physiol. 2014;229:1397–404.

    Article  CAS  PubMed  Google Scholar 

  8. Yamamoto-Shiraishi Y, Kuroiwa A. Wnt and BMP signaling cooperate with Hox in the control of Six2 expression in limb tendon precursor. Dev Biol. 2013;377:363–74.

    Article  CAS  PubMed  Google Scholar 

  9. Garcez RC, Le Douarin NM, Creuzet SE. Combinatorial activity of Six1-2-4 genes in cephalic neural crest cells controls craniofacial and brain development. Cell Mol Life Sci. 2014;71:2149–64.

    CAS  PubMed  Google Scholar 

  10. Metsuyanim S, Pode-Shakked N, Schmidt-Ott KM, et al. Accumulation of malignant renal stem cells is associated with epigenetic changes in normal renal progenitor genes. Stem Cells. 2008;26:1808–17.

    Article  CAS  PubMed  Google Scholar 

  11. Kobayashi A, Valerius MT, Mugford JW, et al. SIX2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell. 2008;3:169–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oliver G, Wehr R, Jenkins NA, et al. Homeobox genes and connective tissue patterning. DeveloPment. 1995;121:693–705.

    CAS  PubMed  Google Scholar 

  13. Sehic D, Karlsson J, Sandstedt B, et al. SIX1 protein expression selectively identifies blastemal elements in Wilms tumor. Pediatr Blood Cancer. 2012;59:62–8.

    Article  PubMed  Google Scholar 

  14. Lyu Z, Mao Z, Wang H, et al. MiR-181b targets Six2 and inhibits the proliferation of metanephric mesenchymal cells in vitro. Biochem Biophys Res Commun. 2013;440:495–501.

    Article  CAS  PubMed  Google Scholar 

  15. Xu J, Liu H, Park JS, et al. Osr1 acts downstream of and interacts synergistically with six2 to maintain nephron progenitor cells during kidney organogenesis. Development. 2014;141:1442–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kanda S, Tanigawa S, Ohmori T, et al. Sall1 maintains nephron progenitors and nascent nephrons by acting as both an activator and a repressor. J Am Soc Nephrol 2014; Epub.

  17. Weber S, Taylor JC, Winyard P, et al. SIX2 and BMP4 mutations associate with anomalous kidney development. J Am Soc Nephrol. 2008;19:891–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Somponpun SJ, Wong B, Hynd TE, et al. Osmoregulatory defect in adult mice associated with deficient prenatal expression of SIX2. Am J Physiol Requl Inteqr Comp Physiol. 2011;301:R682–9.

    Article  CAS  Google Scholar 

  19. Susa K, Kita S, Iwamoto T, et al. Effect of heterozygous deletion of WNK1 on the WNK-OSR1/SPAK-NCC/NKCC1/NKCC2 signal cascade in the kidney and blood vessels. Clin Exp Nephrol. 2012;16:530–8.

    Article  CAS  PubMed  Google Scholar 

  20. Kim ST, Ahn SY, Swat W, et al. DLG1 influences distal ureter maturation via a non-epithelial cell autonomous mechanism involving reduced retinoic acid signaling, ret expression, and apoptosis. Dev Biol. 2014;390:160–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou P, Chen T, Fang Y, et al. Down-regulated Six2 by knockdown of neurofibromin results in apoptosis of metanephric mesenchyme cells in vitro. Mol Cell Biochem. 2014;390:205–13.

    Article  CAS  PubMed  Google Scholar 

  22. Denner DR, Rauchman M. Mi-2/NuRD is required in renal progenitor cells during embryonic kidney development. Dev Biol. 2013;375:105–16.

    Article  CAS  PubMed  Google Scholar 

  23. Hwang DY, Dworschak GC, Kohl S, et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. 2014;85:1429–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Self M, Lagutin OV, Bowling B, et al. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J. 2006;25:5214–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kang M, Han YM. Differentiation of human pluripotent stem cells into nephron progenitor cells in a serum and feeder free system. PLoS One. 2014;9, e94888.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Murphy AJ, Pierce J, de Caestecker C, et al. SIX2 and CITED1, markers of nephronic progenitor self-renewal, remain active in primitive elements of Wilms’ tumor. J Pediatr Surq. 2012;47:1239–49.

    Article  Google Scholar 

  27. Senanayake U, Koller K, Pichler M, et al. The pluripotent renal stem cell regulator SIX2 is activated in renal neoplasms and influences cellular proliferation and migration. Hum Pathol. 2013;44:336–45.

    Article  CAS  PubMed  Google Scholar 

  28. Pierce J, Murphy AJ, Panzer A, et al. SIX2 Effects on Wilms Tumor Biology. Transl Oncol. 2014;7:800–11.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Song DJ, Yue LF, Yang HY, et al. Expression and promoter methylation of SIX2 gene in peripheral blood of pediatric patients with nephroblastoma. National Medical Journal of China. 2013;93:1876–80.

    CAS  PubMed  Google Scholar 

  30. Jjingo D, Conley AB, Yi SV, et al. On the presence and role of human gene-body DNA methylation. Oncotarget. 2012;3:462–74.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kulis M, Queirós AC, Beekman R, et al. Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochim Biophys Acta. 1829;2013:1161–74.

    Google Scholar 

  32. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4:143–53.

    Article  CAS  PubMed  Google Scholar 

  33. Rauch T, Li H, Wu X, et al. MIRA-Assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res. 2006;66:7939–47.

    Article  CAS  PubMed  Google Scholar 

  34. Verma M, Maruvada P, Srivastava S. Epigenetics and cancer. Crit Rev Clin Lab Sci. 2004;41:585–607.

    Article  CAS  PubMed  Google Scholar 

  35. Aiden AP, Rivera MN, Rheinbay E, et al. Wilms tumor chromatin profiles highlight stem cell properties and a renal developmental network. Cell Stem Cell. 2010;6:591–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu CT, Tang K, Suh JM, et al. COUP-TFII is essential for metanephric mesenchyme formation and kiney precursor cell survival. Development. 2012;139:2330–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Karner CM, Das A, Ma Z, et al. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development. 2011;138:1247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kiefer SM, Robbins L, Rauchman M. Conditional expression of Wnt9b in Six2-positive cells disrupts stomach and kidney function. PLoS One. 2012;7, e43098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Pro. Lijun Wang from School of Foreign Languages of Zhengzhou University and International Science Editing for the language editing and polishing of this paper. This work was supported by a grant (No. 81172085) from the National Natural Science Foundation of China.

Author contributions

DS, LY, GW, SM, LG, HY, QL, DZ, ZX, LW, JZ, WZ, and FG conducted experiments. JW planned and supervised experiments. DS wrote the paper. All authors approved the final version of the manuscript.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxiang Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary File 1

(DOC 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, D., Yue, L., Wu, G. et al. Assessment of promoter methylation and expression of SIX2 as a diagnostic and prognostic biomarker in Wilms’ tumor. Tumor Biol. 36, 7591–7598 (2015). https://doi.org/10.1007/s13277-015-3456-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3456-5

Keywords

Navigation