Tumor Biology

, Volume 36, Issue 9, pp 7285–7292 | Cite as

VEGFR1 and VEGFR2 in lip carcinogenesis and its association with microvessel density

  • Carla Ariotti
  • Vivian Petersen Wagner
  • Gabriela Salvadori
  • Vinicius Coelho Carrard
  • Marco Antônio Trevizani Martins
  • Joao Julio da Cunha Filho
  • Luise Meurer
  • Manoela Domingues Martins
Research Article


The aim of the present study was to determine the role of vascular endothelial growth factor receptors (VEGFR1 and VEGFR2) in lip carcinogenesis, to investigate correlations between these markers with microvessel density (MVD) and clinicopathological aspects. Medical records from 27 cases of actinic cheilitis (AC) and 46 cases of lower lip squamous cell carcinoma (LLSCC) were analysed and submitted to immunohistochemistry. VEGFR1- and VEGFR2-immunostained sections were analysed based on percentage of positive epithelial and inflammatory cells, while CD31 was submitted to quantitative analysis to determine MVD. Different patterns of VGFR1 and VEGFR2 expression were observed between AC and LLSCC. VEGFR1 expression in epithelial and inflammatory cells and VEGFR2 expression in epithelial cells were higher in AC compared to LLSCC (p < 0.05). VEGFR1 expression in epithelial cells was higher in LLSCC compared to AC (p < 0.001). Expression of both receptors was not associated to MVD or clinicopathological aspects. A direct correlation was found between epithelial VEGFR1 and VEGFR2 expression (p = 0.02) and between VEGFR2 epithelial and inflammatory expression (p < 0.001). Our findings indicate that activation of VEGFR1 and VEGFR2 in epithelial and inflammatory cells appears to be an early event in lip carcinogenesis.


Oral squamous cell carcinoma Actinic cheilitis Potentially malignant disorders Vascular endothelial growth factor Angiogenesis 



The authors are grateful to Flavia Rejane Giusti for technical support.

Conflicts of interest


Funding support

This study was supported by the Postgraduate Research Group of the Porto Alegre University Hospital (GPPG/FIPE: 14-0042). Luise Meurer and Manoela Domingues Martins are research fellows funded by the Brazilian National Council for Scientific and Technological Development (CNPq).


  1. 1.
    Savage NW, McKay C, Faulkner C. Actinic cheilitis in dental practice. Aust Dent J. 2010;55 Suppl 1:78–84.CrossRefPubMedGoogle Scholar
  2. 2.
    dos Santos JN, de Sousa SO, Nunes FD, Sotto MN, de Araujo VC. Altered cytokeratin expression in actinic cheilitis. J Cutan Pathol. 2003;4:237–41.CrossRefGoogle Scholar
  3. 3.
    Corso FM, Wild C, Gouveia LO, Ribas MO. Actinic cheilitis: prevalence in dental clinics from PUCPR, Curitiba, Brazil. Clin Pesq Odontol. 2006;2:227–81.Google Scholar
  4. 4.
    Henrique PR, Junior MB, Araujo VC, Junqueira JLC, Furuse C. Prevalence of oral mucosal changes in the adult population from Uberaba, Minas Gerais. RGO. 2009;57:261–7.CrossRefGoogle Scholar
  5. 5.
    de Souza Lucena EE, Costa DC, da Silveira EJ, Lima KC. Prevalence and factors associated to actinic cheilitis in beach workers. Oral Dis. 2012;18(6):575–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Miranda AM, Soares LG, Ferrari TM, Silva DG, Falabella ME, Tinoco EM. Prevalence of actinic cheilitis in a population of agricultural sugarcane workers. Acta Odontol Latinoam. 2012;25(2):201–6.PubMedGoogle Scholar
  7. 7.
    Sugerman PB, Savage NW. Oral cancer in Australia: 1983–1996. Aust Dent J. 2002;47(1):45–56.CrossRefPubMedGoogle Scholar
  8. 8.
    Leelahavanichkul K, Amornphimoltham P, Molinolo AA, Basile JR, Koontongkaew S, Gutkind JS. A role for p38 MAPK in head and neck cancer cell growth and tumor-induced angiogenesis and lymphangiogenesis. Mol Oncol. 2014;8(1):105–18.CrossRefPubMedGoogle Scholar
  9. 9.
    Sasahira T, Kirita T, Kuniyasu H. Update of molecular pathobiology in oral cancer: a review. Int J Clin Oncol. 2014;19(3):431–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci. 2001;114(Pt 5):853–65.PubMedGoogle Scholar
  11. 11.
    Wey JS, Stoeltzing O, Ellis LM. Vascular endothelial growth factor receptors: expression and function in solid tumors. Clin Adv Hematol Oncol. 2004;2(1):37–45.PubMedGoogle Scholar
  12. 12.
    Shibuya M. Role of VEGF-flt receptor system in normal and tumor angiogenesis. Adv Cancer Res. 1995;67:281–316.CrossRefPubMedGoogle Scholar
  13. 13.
    Margaritescu C, Pirici D, Simionescu C, Mogoanta L, Raica M, Stinga A, et al. VEGF and VEGFRs expression in oral squamous cell carcinoma. Rom J Morphol Embryol Rev Roum Morphol Embryol. 2009;50(4):527–48.Google Scholar
  14. 14.
    Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18(1):4–25.CrossRefPubMedGoogle Scholar
  15. 15.
    Reinmuth N, Liu W, Jung YD, Ahmad SA, Shaheen RM, Fan F, et al. Induction of VEGF in perivascular cells defines a potential paracrine mechanism for endothelial cell survival. FASEB J Off Publ Fed Am Soc Exp Biol. 2001;15(7):1239–41.Google Scholar
  16. 16.
    Dias S, Hattori K, Heissig B, Zhu Z, Wu Y, Witte L, et al. Inhibition of both paracrine and autocrine VEGF/ VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci U S A. 2001;98(19):10857–62.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kyzas PA, Stefanou D, Agnantis NJ. Immunohistochemical expression of vascular endothelial growth factor correlates with positive surgical margins and recurrence in T1 and T2 squamous cell carcinoma (SCC) of the lower lip. Oral Oncol. 2004;40(9):941–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Margaritescu C, Pirici D, Stinga A, Simionescu C, Raica M, Mogoanta L, et al. VEGF expression and angiogenesis in oral squamous cell carcinoma: an immunohistochemical and morphometric study. Clin Exp Med. 2010;10(4):209–14.CrossRefPubMedGoogle Scholar
  19. 19.
    Stinga AC, Margaritescu O, Stinga AS, Pirici D, Ciurea R, Bunget A, et al. VEGFR1 and VEGFR2 immunohistochemical expression in oral squamous cell carcinoma: a morphometric study. Rom J Morphol Embryol Rev Roum Morphol Embryol. 2011;52(4):1269–75.Google Scholar
  20. 20.
    Cabebe E, Wakelee H. Role of anti-angiogenesis agents in treating NSCLC: focus on bevacizumab and VEGFR tyrosine kinase inhibitors. Curr Treat Options in Oncol. 2007;8(1):15–27.CrossRefGoogle Scholar
  21. 21.
    Murakami M, Nguyen LT, Hatanaka K, Schachterle W, Chen PY, Zhuang ZW, et al. FGF-dependent regulation of VEGF receptor 2 expression in mice. J Clin Invest. 2011;121(7):2668–78.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Florence ME, Massuda JY, Brocker EB, Metze K, Cintra ML, Souza EM. Angiogenesis in the progression of cutaneous squamous cell carcinoma: an immunohistochemical study of endothelial markers. Clinics. 2011;66(3):465–8.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Konger RL, Xu Z, Sahu RP, Rashid BM, Mehta SR, Mohamed DR, et al. Spatiotemporal assessments of dermal hyperemia enable accurate prediction of experimental cutaneous carcinogenesis as well as chemopreventive activity. Cancer Res. 2013;73(1):150–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Shinkaruk S, Bayle M, Lain G, Deleris G. Vascular endothelial cell growth factor (VEGF), an emerging target for cancer chemotherapy. Curr Med Chem Anti Cancer Agents. 2003;3(2):95–117.CrossRefPubMedGoogle Scholar
  25. 25.
    Michi Y, Morita I, Amagasa T, Murota S. Human oral squamous cell carcinoma cell lines promote angiogenesis via expression of vascular endothelial growth factor and upregulation of KDR/flk-1 expression in endothelial cells. Oral Oncol. 2000;36(1):81–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Kyzas PA, Stefanou D, Batistatou A, Agnantis NJ. Potential autocrine function of vascular endothelial growth factor in head and neck cancer via vascular endothelial growth factor receptor-2. Mod Pathol Off J U S Can Acad Pathol Inc. 2005;18(4):485–94.Google Scholar
  27. 27.
    Moriyama M, Kumagai S, Kawashiri S, Kojima K, Kakihara K, Yamamoto E. Immunohistochemical study of tumour angiogenesis in oral squamous cell carcinoma. Oral Oncol. 1997;33(5):369–74.CrossRefPubMedGoogle Scholar
  28. 28.
    Lalla RV, Boisoneau DS, Spiro JD, Kreutzer DL. Expression of vascular endothelial growth factor receptors on tumor cells in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2003;129(8):882–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Ciurea R, Margaritescu C, Simionescu C, Stepan A, Ciurea M. VEGF and his R1 and R2 receptors expression in mast cells of oral squamous cells carcinomas and their involvement in tumoral angiogenesis. Rom J Morphol Embryol Rev Roum Morphol Embryol. 2011;52(4):1227–32.Google Scholar
  30. 30.
    Thompson L. Health Organization classification of tumours. Pathology and genetics of tumours of the head and neck. Ear Nose Throat J. 2005;85(2):74.Google Scholar
  31. 31.
    Bryne M, Koppang HS, Lilleng R, Kjaerheim A. Malignancy grading of the deep invasive margins of oral squamous cell carcinomas has high prognostic value. J Pathol. 1992;166(4):375–81.CrossRefPubMedGoogle Scholar
  32. 32.
    Dhakal HP, Naume B, Synnestvedt M, Borgen E, Kaaresen R, Schlichting E, et al. Expression of vascular endothelial growth factor and vascular endothelial growth factor receptors 1 and 2 in invasive breast carcinoma: prognostic significance and relationship with markers for aggressiveness. Histopathology. 2012;61(3):350–64.CrossRefPubMedGoogle Scholar
  33. 33.
    Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med. 1991;324(1):1–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Christopoulos A, Ahn SM, Klein JD, Kim S. Biology of vascular endothelial growth factor and its receptors in head and neck cancer: beyond angiogenesis. Head Neck. 2011;33(8):1220–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Raica M, Cimpean AM, Ribatti D. Angiogenesis in pre-malignant conditions. Eur J Cancer. 2009;45(11):1924–34.CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang Z, Neiva KG, Lingen MW, Ellis LM, Nor JE. VEGF-dependent tumor angiogenesis requires inverse and reciprocal regulation of VEGFR1 and VEGFR2. Cell Death Differ. 2010;17(3):499–512.CrossRefPubMedGoogle Scholar
  37. 37.
    Jackson MW, Roberts JS, Heckford SE, Ricciardelli C, Stahl J, Choong C, et al. A potential autocrine role for vascular endothelial growth factor in prostate cancer. Cancer Res. 2002;62(3):854–9.PubMedGoogle Scholar
  38. 38.
    Kyzas PA, Cunha IW, Ioannidis JP. Prognostic significance of vascular endothelial growth factor immunohistochemical expression in head and neck squamous cell carcinoma: a meta-analysis. Clin Cancer Res Off J Am Assoc Cancer Res. 2005;11(4):1434–40.CrossRefGoogle Scholar
  39. 39.
    Carlile J, Harada K, Baillie R, Macluskey M, Chisholm DM, Ogden GR, et al. Vascular endothelial growth factor (VEGF) expression in oral tissues: possible relevance to angiogenesis, tumour progression and field cancerisation. J Oral Pathol Med Off Publ Int Assoc Oral Pathol Am Acad Oral Pathol. 2001;30(8):449–57.Google Scholar
  40. 40.
    Johnstone S, Logan RM. The role of vascular endothelial growth factor (VEGF) in oral dysplasia and oral squamous cell carcinoma. Oral Oncol. 2006;42(4):337–42.CrossRefPubMedGoogle Scholar
  41. 41.
    Gandolfo M, Keszler A, Lanfranchi H, Itoiz ME. Increased subepithelial vascularization and VEGF expression reveal potentially malignant changes in human oral mucosa lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111(4):486–93.CrossRefPubMedGoogle Scholar
  42. 42.
    Sawane M, Kajiya K. Ultraviolet light-induced changes of lymphatic and blood vasculature in skin and their molecular mechanisms. Exp Dermatol. 2012;21 Suppl 1:22–5.CrossRefPubMedGoogle Scholar
  43. 43.
    Li Y, Bi Z, Yan B, Wan Y. UVB radiation induces expression of HIF-1alpha and VEGF through the EGFR/PI3K/DEC1 pathway. Int J Mol Med. 2006;18(4):713–9.PubMedGoogle Scholar
  44. 44.
    Shintani S, Li C, Ishikawa T, Mihara M, Nakashiro K, Hamakawa H. Expression of vascular endothelial growth factor A, B, C, and D in oral squamous cell carcinoma. Oral Oncol. 2004;40(1):13–20.CrossRefPubMedGoogle Scholar
  45. 45.
    Astekar M, Joshi A, Ramesh G, Metgud R. Expression of vascular endothelial growth factor and microvessel density in oral tumorigenesis. J Oral Maxillofac Pathol JOMFP. 2012;16(1):22–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Ravi D, Ramadas K, Mathew BS, Nalinakumari KR, Nair MK, Pillai MR. Angiogenesis during tumor progression in the oral cavity is related to reduced apoptosis and high tumor cell proliferation. Oral Oncol. 1998;34(6):543–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Macluskey M, Baillie R, Chandrachud LM, Pendleton N, Schor AM. High levels of apoptosis are associated with improved survival in non-small cell lung cancer. Anticancer Res. 2000;20(3B):2123–8.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Carla Ariotti
    • 1
  • Vivian Petersen Wagner
    • 1
  • Gabriela Salvadori
    • 2
  • Vinicius Coelho Carrard
    • 1
  • Marco Antônio Trevizani Martins
    • 3
  • Joao Julio da Cunha Filho
    • 4
  • Luise Meurer
    • 5
  • Manoela Domingues Martins
    • 1
    • 3
  1. 1.Department of Oral Pathology, School of DentistryUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Institute of Oral Biology, Faculty of DentistryUniversity of OsloOsloNorway
  3. 3.Department of Oral MedicineHospital de Clínicas de Porto Alegre (HCPA/UFRGS)Porto AlegreBrazil
  4. 4.Department of Oral Surgery, School of DentistryUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  5. 5.Department of Pathology, School of MedicineUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations