Tumor Biology

, Volume 36, Issue 9, pp 7167–7174 | Cite as

Plasma microRNA might as a potential biomarker for hepatocellular carcinoma and chronic liver disease screening

  • Li JiangEmail author
  • Xue Li
  • Qi Cheng
  • Bin-Hao Zhang
Research Article


Our study aims to investigate the expression signature of plasma microRNA-106b (miRNA-106b, miR-106b) in hepatocellular carcinoma (HCC) patients and chronic liver disease (CLD) patients compared with healthy controls and further evaluate the potential clinical value of miR-106b as biomarker in HCC detection. In addition, a meta-analysis was conducted to assess the diagnostic performance of miR-106a/b as a biochemical marker for cancer screening. This study was divided into two phases. In the first phase, the expression levels of plasma miR-106b obtained from 108 subjects (47 HCC patients, 25 CLD patients, and 36 healthy controls) were measured by using qRT-PCR. Areas under receiver operating characteristic (ROC) curves (AUCs) were used to evaluate the diagnostic accuracy of plasma miR-106. In the second phase, a meta-analysis based on 11 previous researches as well as our current study was conducted to assess the potential clinical value of miR-106 in cancer detection. Plasma levels of miR-106b in HCC patients were significantly higher compared with CLD patients and healthy individuals. ROC curves suggested that plasma miR-106b yielded relative high sensitivities and specificities in differentiating HCC patients from CLD patients or healthy controls with corresponding AUC values of 0.726 and 0.879, respectively. In addition, miR-106b showed a relatively high accuracy in distinguishing CLD patients from healthy controls with its AUC value of 0.703. Furthermore, the meta-analysis for diagnostic performance of miR-106a/b showed a pooled sensitivity of 0.74, specificity of 0.75, and an AUC of 0.81. Subgroup analysis based on samples types revealed a higher diagnostic performance of miR-106 for cancer detection by using non-blood samples. Similarly, miR-106 as biomarker showed a higher diagnostic accuracy for gastric cancer detection. We found that plasma miR-106b has clinical value in the detection of HCC from healthy people and CLD patients. Further large-scale study may be needed to validate our findings.


miR-106 Plasma Hepatocellular carcinoma Chronic liver disease Diagnosis 



This study was funded by the National Natural Science Foundation of China (No. 81472705).

Conflicts of interest



  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.CrossRefPubMedGoogle Scholar
  2. 2.
    Curado M-P, Edwards B, Shin HR, Storm H, Ferlay J, Heanue M et al. Cancer incidence in five continents, Volume IX. IARC Press, International Agency for Research on Cancer; 2007.Google Scholar
  3. 3.
    Fukuda S, Itamoto T, Nakahara H, Kohashi T, Ohdan H, Hino H, et al. Clinicopathologic features and prognostic factors of resected solitary small-sized hepatocellular carcinoma. Hepato-Gastroenterology. 2004;52:1163–7.Google Scholar
  4. 4.
    Yuen MF, Cheng CC, Lauder I, Lam SK, Ooi CG, Lai CL. Early detection of hepatocellular carcinoma increases the chance of treatment: Hong Kong experience. Hepatology. 2000;31:330–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Poon RTP, Fan ST. Hepatectomy for hepatocellular carcinoma: Patient selection and postoperative outcome. Liver Transpl. 2004;10:S39–45.CrossRefPubMedGoogle Scholar
  6. 6.
    Schwartz M, Roayaie S, Konstadoulakis M. Strategies for the management of hepatocellular carcinoma. Nat Clin Pract Oncol. 2007;4:424–32.CrossRefPubMedGoogle Scholar
  7. 7.
    Colli A, Fraquelli M, Casazza G, Massironi S, Colucci A, Conte D, et al. Accuracy of ultrasonography, spiral CT, magnetic resonance, and alpha-fetoprotein in diagnosing hepatocellular carcinoma: a systematic review. Am J Gastroenterol. 2006;101:513–23.CrossRefPubMedGoogle Scholar
  8. 8.
    Gupta S, Bent S, Kohlwes J. Test characteristics of α-fetoprotein for detecting hepatocellular carcinoma in patients with hepatitis C: a systematic review and critical analysis. Ann Intern Med. 2003;139:46–50.CrossRefPubMedGoogle Scholar
  9. 9.
    Grazi GL, Mazziotti A, Legnani C, Jovine E, Miniero R, Gallucci A, et al. The role of tumor markers in the diagnosis of hepatocellular carcinoma, with special reference to the des-gamma-carboxy prothrombin. Liver Transpl Surg. 1995;1:249–55.CrossRefPubMedGoogle Scholar
  10. 10.
    Soga K, Watanabe T, Aikawa K, Toshima M, Shibasaki K, Aoyagi Y. Serum des-gamma-carboxyprothrombin level by a modified enzyme immunoassay method in hepatocellular carcinoma: Clinical significance in small hepatocellular carcinoma. Hepato-Gastroenterology. 1997;45:1737–41.Google Scholar
  11. 11.
    He L, Hannon GJ. MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.CrossRefPubMedGoogle Scholar
  12. 12.
    Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: a new source of biomarkers. Mutat Res Fundam Mol Mech Mutagen. 2011;717:85–90.CrossRefGoogle Scholar
  13. 13.
    Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–41.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Xiao B, Guo J, Miao Y, Jiang Z, Huan R, Zhang Y, et al. Detection of miR-106a in gastric carcinoma and its clinical significance. Clin Chim Acta. 2009;400:97–102.CrossRefPubMedGoogle Scholar
  15. 15.
    Landais S, Landry S, Legault P, Rassart E. Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res. 2007;67:5699–707.CrossRefPubMedGoogle Scholar
  16. 16.
    Díaz R, Silva J, García JM, Lorenzo Y, García V, Peña C, et al. Deregulated expression of miR‐106a predicts survival in human colon cancer patients. Genes Chromosom Cancer. 2008;47:794–802.CrossRefPubMedGoogle Scholar
  17. 17.
    Nana-Sinkam SP, Fabbri M, Croce CM. MicroRNAs in cancer: Personalizing diagnosis and therapy. Ann N Y Acad Sci. 2010;1210:25–33.CrossRefPubMedGoogle Scholar
  18. 18.
    Ferracin M, Veronese A, Negrini M. Micromarkers: miRNAs in cancer diagnosis and prognosis. 2010.Google Scholar
  19. 19.
    Shen G, Jia H, Tai Q, Li Y, Chen D. miR-106b downregulates adenomatous polyposis coli and promotes cell proliferation in human hepatocellular carcinoma. Carcinogenesis. 2013;34:211–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Cai H, Yuan Y, Hao YF, Guo TK, Wei X, Zhang YM. Plasma microRNAs serve as novel potential biomarkers for early detection of gastric cancer. Med Oncol. 2013;30:452. doi: 10.1007/s12032-012-0452-0.CrossRefPubMedGoogle Scholar
  21. 21.
    Cui L, Zhang X, Ye G, Zheng T, Song H, Deng H, et al. Gastric juice MicroRNAs as potential biomarkers for the screening of gastric cancer. Cancer. 2013;119:1618–26. doi: 10.1002/cncr.27903.CrossRefPubMedGoogle Scholar
  22. 22.
    Shiotani A, Murao T, Kimura Y, Matsumoto H, Kamada T, Kusunoki H, et al. Identification of serum miRNAs as novel non-invasive biomarkers for detection of high risk for early gastric cancer. Br J Cancer. 2013;109:2323–30. doi: 10.1038/bjc.2013.596.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tsujiura M, Ichikawa D, Komatsu S, Shiozaki A, Takeshita H, Kosuga T, et al. Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer. 2010;102:1174–9. doi: 10.1038/sj.bjc.6605608.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zeng Q, Jin C, Chen W, Xia F, Wang Q, Fan F, et al. Downregulation of serum miR-17 and miR-106b levels in gastric cancer and benign gastric diseases. Chin J Cancer Res. 2014;26:711–6. doi: 10.3978/j.issn.1000-9604.2014.12.03.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Zhang L, Meng L, Fan Z, Liu B, Pei Y, Zhao Z. [Expression of plasma miR-106a in colorectal cancer and its clinical significance]. Nan Fang Yi Ke Da Xue Xue Bao. 2014;34:354–7.PubMedGoogle Scholar
  26. 26.
    Zhang R, Wang W, Li F, Zhang H, Liu J. MicroRNA-106b ∼ 25 expressions in tumor tissues and plasma of patients with gastric cancers. Med Oncol. 2014;31:243. doi: 10.1007/s12032-014-0243-x.CrossRefPubMedGoogle Scholar
  27. 27.
    Zheng R, Pan L, Gao J, Ye X, Chen L, Zhang X, et al. Prognostic value of miR-106b expression in breast cancer patients. J Surg Res. 2014. doi: 10.1016/j.jss.2014.12.035.Google Scholar
  28. 28.
    Zhou H, Guo JM, Lou YR, Zhang XJ, Zhong FD, Jiang Z, et al. Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using microRNA as a marker. J Mol Med (Berl). 2010;88:709–17. doi: 10.1007/s00109-010-0617-2.CrossRefGoogle Scholar
  29. 29.
    Zhou X, Zhang X, Yang Y, Li Z, Du L, Dong Z, et al. Urinary cell-free microRNA-106b as a novel biomarker for detection of bladder cancer. Med Oncol. 2014;31:197. doi: 10.1007/s12032-014-0197-z.CrossRefPubMedGoogle Scholar
  30. 30.
    Tomimaru Y, Eguchi H, Nagano H, Wada H, Kobayashi S, Marubashi S, et al. Circulating microRNA-21 as a novel biomarker for hepatocellular carcinoma. J Hepatol. 2012;56:167–75.CrossRefPubMedGoogle Scholar
  31. 31.
    Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, et al. Detection of elevated levels of tumour‐associated microRNAs in serum of patients with diffuse large B‐cell lymphoma. Br J Haematol. 2008;141:672–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Liu F, Gong J, Huang W, Wang Z, Wang M, Yang J, et al. MicroRNA-106b-5p boosts glioma tumorigensis by targeting multiple tumor suppressor genes. Oncogene. 2014;33:4813–22.CrossRefPubMedGoogle Scholar
  33. 33.
    Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM, et al. Identification of the miR-106b ∼ 25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal. 2010;3:ra29. doi: 10.1126/scisignal.2000594.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Li P, Xu Q, Zhang D, Li X, Han L, Lei J, et al. Upregulated miR-106a plays an oncogenic role in pancreatic cancer. FEBS Lett. 2014;588:705–12. doi: 10.1016/j.febslet.2014.01.007.CrossRefPubMedGoogle Scholar
  35. 35.
    Wang Z, Liu M, Zhu H, Zhang W, He S, Hu C, et al. miR-106a is frequently upregulated in gastric cancer and inhibits the extrinsic apoptotic pathway by targeting FAS. Mol Carcinog. 2013;52:634–46. doi: 10.1002/mc.21899.CrossRefPubMedGoogle Scholar
  36. 36.
    Yao YL, Wu XY, Wu JH, Gu T, Chen L, Gu JH, et al. Effects of microRNA-106 on proliferation of gastric cancer cell through regulating p21 and E2F5. Asian Pac J Cancer Prev. 2013;14:2839–43.CrossRefPubMedGoogle Scholar
  37. 37.
    Smith AL, Iwanaga R, Drasin DJ, Micalizzi DS, Vartuli RL, Tan AC, et al. The miR-106b-25 cluster targets Smad7, activates TGF-beta signaling, and induces EMT and tumor initiating cell characteristics downstream of Six1 in human breast cancer. Oncogene. 2012;31:5162–71. doi: 10.1038/onc.2012.11.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Biliary and Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Clinical Immunology, College of Laboratory MedicineTianjin Medical UniversityTianjinChina
  3. 3.Hepatic Surgery Center, Affiliated Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations