Tumor Biology

, Volume 36, Issue 9, pp 7251–7267 | Cite as

RPF151, a novel capsaicin-like analogue: in vitro studies and in vivo preclinical antitumor evaluation in a breast cancer model

  • Adilson Kleber Ferreira
  • Maurício Temotheo Tavares
  • Kerly Fernanda Mesquita Pasqualoto
  • Ricardo Alexandre de Azevedo
  • Sarah Fernandes Teixeira
  • Wilson Alves Ferreira-Junior
  • Ariane Matiello Bertin
  • Paulo Luiz de-Sá-Junior
  • José Alexandre Marzagão Barbuto
  • Carlos Rogério Figueiredo
  • Yara Cury
  • Mariana Celestina Frojuello Costa Bernstorff Damião
  • Roberto Parise-Filho
Research Article


Capsaicin, the primary pungent component of the chili pepper, has antitumor activity. Herein, we describe the activity of RPF151, an alkyl sulfonamide analogue of capsaicin, against MDA-MB-231 breast cancer cells. RPF151 was synthetized, and molecular modeling was used to compare capsaicin and RPF151. Cytotoxicity of RPF151 on MDA-MB-231 was also evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5diphenyltetrazolium bromide (MTT) assay. Cell cycle analysis, by flow cytometry, and Western blot analysis of cycle-related proteins were used to evaluate the antiproliferative mechanisms. Apoptosis was evaluated by phosphatidyl-serine externalization, cleavage of Ac-YVAD-AMC, and Bcl-2 expression. The production of reactive oxygen species was evaluated by flow cytometry. RPF151 in vivo antitumor effects were investigated in murine MDA-MB-231 model. This study shows that RPF151 downregulated p21 and cyclins A, D1, and D3, leading to S-phase arrest and apoptosis. Although RPF151 has induced the activation of TRPV-1 and TRAIL-R1/DR4 and TRAIL-2/DR5 on the surface of MDA-MB-231 cells, its in vivo antitumor activity was TRPV-1-independent, thus suggesting that RPF151 should not have the same pungency-based limitation of capsaicin. In silico analysis corroborated the biological findings, showing that RPF151 has physicochemical improvements over capsaicin. Overall, the activity of RPF151 against MDA-MB-231 and its lower pungency suggest that it may have a relevant role in cancer therapy.


Alkyl sulfonamide analogue RPF151 Antitumor Apoptosis Capsaicin MDA-MB-231 



This work was supported by grants of the Provost’s Office for Research of University of Sao Paulo, CAPES and CNPq (Brazil). The authors are grateful to FAPESP (proc. nr.: 2012/23233-8, 2013/18160-4, and 2013/07273-2) and to Professor Leoberto Costa Tavares, coordinator of Laboratory for Designing and Development of New Drugs, Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmacy at University of Sao Paulo, who kindly allowed the use of a workstation to perform the in silico analysis, and to the Chem21 Group, Inc., for the MOLSIM 3.2 software academic license.

Conflicts of interest



  1. 1.
    Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov. 2005;4:206–18.CrossRefPubMedGoogle Scholar
  2. 2.
    Walpole CSJ, Wrigglesworth R, Bevan S, Campbell EA, Dray A, James IF, et al. Analogues of capsaicin with agonist activity as novel analgesic agents; structure-activity studies. 2. The amide bond “B-region”. J Med Chem. 1993;36:2373–80.CrossRefPubMedGoogle Scholar
  3. 3.
    Walpole CSJ, Wrigglesworth R, Bevan S, Campbell EA, Dray A, James IF, et al. Analogs of capsaicin with agonist activity as novel analgesic agents; structure-activity studies. 1. The aromatic “A-region”. J Med Chem. 1993;36:2362–72.CrossRefPubMedGoogle Scholar
  4. 4.
    Walpole CSJ, Wrigglesworth R, Bevan S, Campbell EA, Dray A, James IF, et al. Analogues of capsaicin with agonist activity as novel analgesic agents; structure-activity studies. 3. The hydrophobic side-chain “C-Region”. J Med Chem. 1993;36:2381–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Maity R, Sharma J, Jana NR. Capsaicin induces apoptosis through ubiquitin-proteasome system dysfunction. J Cell Biochem. 2010;109:933–42.PubMedGoogle Scholar
  6. 6.
    Surh Y-J, Lee SS. Capsaicin in hot chili pepper: carcinogen, co-carcinogen or anticarcinogen? Food Chem Toxicol. 1996;34:313–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Thoennissen NH, O’Kelly J, Lu D, Iwanski GB, La DT, Abbassi S, et al. Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and -negative breast cancer cells by modulating the EGFR/HER-2 pathway. Oncogene. Nature Publishing Group; 2010;29:285–96.Google Scholar
  8. 8.
    Kim JY, Kim EH, Kim SU, Kwon TK, Choi KS. Capsaicin sensitizes malignant glioma cells to TRAIL-mediated apoptosis via DR5 upregulation and survivin downregulation. Carcinogenesis. 2010;31:367–75.CrossRefPubMedGoogle Scholar
  9. 9.
    Ito K. Induction of apoptosis in leukemic cells by homovanillic acid derivative, capsaicin, through oxidative stress: implication of phosphorylation of p53 at Ser-15 residue by reactive oxygen species. Cancer Res. 2004;64:1071–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Sánchez AM, Malagarie-Cazenave S, Olea N, Vara D, Chiloeches A, Díaz-Laviada I. Apoptosis induced by capsaicin in prostate PC-3 cells involves ceramide accumulation, neutral sphingomyelinase, and JNK activation. Apoptosis. 2007;12:2013–24.CrossRefPubMedGoogle Scholar
  11. 11.
    Wu C-C, Lin J-P, Yang J-S, Chou S-T, Chen S-C, Lin Y-T, et al. Capsaicin induced cell cycle arrest and apoptosis in human esophagus epidermoid carcinoma CE 81T/VGH cells through the elevation of intracellular reactive oxygen species and Ca2+ productions and caspase-3 activation. Mutat Res. 2006;601:71–82.CrossRefPubMedGoogle Scholar
  12. 12.
    Oh SH, Kim YS, Lim SC, Hou YF, Chang IY, You HJ. Dihydrocapsaicin (DHC), a saturated structural analog of capsaicin, induces autophagy in human cancer cells in a catalase-regulated manner. Autophagy. 2008;4:1009–19.CrossRefPubMedGoogle Scholar
  13. 13.
    Gurung T, Techawongstien S, Suriharn B, Techawongstien S. Stability analysis of yield and capsaicinoids content in chili (Capsicum spp.) grown across six environments. Euphytica. 2012;187:11–8.CrossRefGoogle Scholar
  14. 14.
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–24.CrossRefPubMedGoogle Scholar
  15. 15.
    Caterina MJ, Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci. 2001;24:487–517.CrossRefPubMedGoogle Scholar
  16. 16.
    Szallasi A, Cortright DN, Blum CA, Eid SR. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov. 2007;6:357–72.CrossRefPubMedGoogle Scholar
  17. 17.
    Lee J, Chang J, Lee JY, Kim J. Capsaicin-lnduced apoptosis and reduced release of reactive oxygen species in MBT-2 murine bladder tumor cells. Arch Pharm Res. 2004;27:1147–53.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang H-M, Chuang S-M, Su Y-C, Li Y-H, Chueh PJ. Down-regulation of tumor-associated NADH oxidase, tNOX (ENOX2), enhances capsaicin-induced inhibition of gastric cancer cell growth. Cell Biochem Biophys. 2011;61:355–66.CrossRefPubMedGoogle Scholar
  19. 19.
    Oikawa S, Nagao E, Sakano K, Kawanishi S. Mechanism of oxidative DNA damage induced by capsaicin, a principal ingredient of hot chili pepper. Free Radic Res. 2006;40:966–73.CrossRefPubMedGoogle Scholar
  20. 20.
    Carragher N. Calpain Inhibition: a therapeutic strategy targeting multiple disease states. Curr Pharm Des. 2006;12:615–38.CrossRefPubMedGoogle Scholar
  21. 21.
    Kim S, Moon A. Capsaicin-induced apoptosis of H-Ras-transformed human breast epithelial cells is Rac-dependent via ROS generation. Arch Pharm Res. 2004;27:845–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Saez ME, Ramirez-Lorca R, Moron FJ, Ruiz A. The therapeutic potential of the calpain family: new aspects. Drug Discov Today. 2006;11:917–23.CrossRefPubMedGoogle Scholar
  23. 23.
    Jung MY, Kang HJ, Moon A. Capsaicin-induced apoptosis in SK-Hep-1 hepatocarcinoma cells involves Bcl-2 downregulation and caspase-3 activation. Cancer Lett. 2001;165:139–45.CrossRefPubMedGoogle Scholar
  24. 24.
    Jun H-S, Park T, Lee CK, Kang MK, Park MS, Kang HI, et al. Capsaicin induced apoptosis of B16-F10 melanoma cells through down-regulation of Bcl-2. Food Chem Toxicol. 2007;45:708–15.CrossRefPubMedGoogle Scholar
  25. 25.
    Ghosh AK, Basu S. Fas-associated factor 1 is a negative regulator in capsaicin induced cancer cell apoptosis. Cancer Lett. Elsevier Ireland Ltd; 2010;287:142–9.Google Scholar
  26. 26.
    Kim J-A, Kang YS, Lee YS. A phospholipase C-dependent intracellular Ca2+ release pathway mediates the capsaicin-induced apoptosis in HepG2 human hepatoma cells. Arch Pharm Res. 2005;28:73–80.CrossRefPubMedGoogle Scholar
  27. 27.
    Lee M-J, Kee K-H, Suh C-H, Lim S-C, Oh S-H. Capsaicin-induced apoptosis is regulated by endoplasmic reticulum stress- and calpain-mediated mitochondrial cell death pathways. Toxicology. 2009;264:205–14.CrossRefPubMedGoogle Scholar
  28. 28.
    Ludy M-J, Moore GE, Mattes RD. The effects of capsaicin and capsiate on energy balance: critical review and meta-analyses of studies in humans. Chem Senses. 2012;37:103–21.CrossRefPubMedGoogle Scholar
  29. 29.
    De-Sá-Júnior PL, Pasqualoto KFM, Ferreira AK, Tavares MT, Damião MCFCB, de Azevedo RA, et al. RPF101, a new capsaicin-like analogue, disrupts the microtubule network accompanied by arrest in the G2/M phase, inducing apoptosis and mitotic catastrophe in the MCF-7 breast cancer cells. Toxicol Appl Pharmacol. 2013;266:385–98.CrossRefPubMedGoogle Scholar
  30. 30.
    Brandão HN, David JM. Química e farmacologia de quimioterápicos antineoplásicos derivados de plantas. Quim Nova. 2010;33:1359–69.CrossRefGoogle Scholar
  31. 31.
    Patani GA, LaVoie EJ. Bioisosterism: a rational approach in drug design. Chem Rev. 1996;96:3147–76.CrossRefPubMedGoogle Scholar
  32. 32.
    Damião MCFCB, Pasqualoto KFM, Ferreira AK, Teixeira SF, Azevedo RA, Barbuto JAM, et al. Novel capsaicin analogues as potential anticancer agents: synthesis, biological evaluation and in silico approach. Arch Pharmacol (Weinheim). 2014;347:885–95.CrossRefGoogle Scholar
  33. 33.
    Sanphui P, Rajput L. Tuning solubility and stability of hydrochlorothiazide co-crystals. Acta Crystallogr B Struct Sci Cryst Eng Mater Int Union Crystallogr. 2014;70:81–90.CrossRefGoogle Scholar
  34. 34.
    Blank BR, Alayoglu P, Engen W, Choi JK, Berkman CE, Anderson MO. N-substituted glutamyl sulfonamides as inhibitors of glutamate carboxypeptidase II (GCP2). Chem Biol Drug Des. 2011;77:241–7.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Singh J, Shaik B, Singh S, Agrawal VK, Khadikar PV, Deeb O, et al. Comparative QSAR study on para-substituted aromatic sulphonamides as CAII inhibitors: information versus topological (distance-based and connectivity) indices. Chem Biol Drug Des. 2008;71:244–59.CrossRefPubMedGoogle Scholar
  36. 36.
    HyperChem Program Release 7.0 for Windows. Hybercube, Inc., Gainesville-FL, USA. Gainesville, FL: Hybercube, Inc.; 2002.Google Scholar
  37. 37.
    Huang Y-L, Wang W-L, Shan S. 3-Chloro-N-(4-hydr-oxy-3-methoxy-benz-yl)-2,2-dimethyl-propanamide. Acta Crystallogr Sect E: Struct Rep Online. 2010;66:877.CrossRefGoogle Scholar
  38. 38.
    Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc Am Chem Soc. 1985;107:3902–9.CrossRefGoogle Scholar
  39. 39.
    Doherty D. MOLSIM: molecular mechanics and dynamics simulation software—user’s guide, version 3.2. Lake Forest: The Chem21 Group Inc; 2002.Google Scholar
  40. 40.
    Forsythe KH, Hopfinger AJ. The influence of solvent on the secondary structures of poly(L-alanine) and poly(L-proline). Macromol Am Chem Soc. 1973;6:423–37.Google Scholar
  41. 41.
    Breneman CM, Wiberg KB. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem. 1990;11:361–73.CrossRefGoogle Scholar
  42. 42.
    Becke AD. A new mixing of Hartree–Fock and local density-functional theories. J Chem Phys AIP Publ. 1993;98:1372–7.CrossRefGoogle Scholar
  43. 43.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 03, revision C.02. Wallingford-CT: Gaussian, Inc; 2004.Google Scholar
  44. 44.
    GaussView for Windows, version 5.0. Gaussian Inc., Pittsburgh, PA.Google Scholar
  45. 45.
    Bodor N, Gabanyi Z, Wong CK. A new method for the estimation of partition coefficient. J Am Chem Soc Am Chem Soc. 1989;111:3783–6.CrossRefGoogle Scholar
  46. 46.
    Gavezzotti A. The calculation of molecular volumes and the use of volume analysis in the investigation of structured media and of solid-state organic reactivity. J Am Chem Soc Am Chem Soc. 1983;105:5220–5.CrossRefGoogle Scholar
  47. 47.
    Viswanadhan VN, Ghose AK, Revankar GR, Robins RK. Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain. J Chem Inf Model Am Chem Soc. 1989;29:163–72.CrossRefGoogle Scholar
  48. 48.
    Marvin Beans 5.8.0 software—calculator plugins 2012. Chemaxon, Ltd., BudapestGoogle Scholar
  49. 49.
    Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16:109–10.CrossRefPubMedGoogle Scholar
  50. 50.
    Deng X, Mani NS. A facile, environmentally benign sulfonamide synthesis in water. Green Chem. 2006;8:835.CrossRefGoogle Scholar
  51. 51.
    Joe AK, Liu H, Suzui M, Vural ME, Xiao D, Weinstein IB. Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clin Cancer Res. 2002;8:893–903.PubMedGoogle Scholar
  52. 52.
    Fulda S, Debatin KM. Sensitization for anticancer drug-induced apoptosis by the chemopreventive agent resveratrol. Oncogene. 2004;23:6702–11.CrossRefPubMedGoogle Scholar
  53. 53.
    Guadamillas MC, Cerezo A, Del Pozo MA. Overcoming anoikis—pathways to anchorage-independent growth in cancer. J Cell Sci. 2011;124:3189–97.CrossRefPubMedGoogle Scholar
  54. 54.
    Pendergrass W, Wolf N, Poot M. Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry A. 2004;61:162–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988;335:440–2.CrossRefPubMedGoogle Scholar
  56. 56.
    Akl H, Vervloessem T, Kiviluoto S, Bittremieux M, Parys JB, De Smedt H, et al. A dual role for the anti-apoptotic Bcl-2 protein in cancer: mitochondria versus endoplasmic reticulum. Biochim Biophys Acta. 2014;1843:2240–52.CrossRefPubMedGoogle Scholar
  57. 57.
    Lin K-L, Su J-C, Chien C-M, Tseng C-H, Chen Y-L, Chang L-S, et al. Naphtho[1,2-b]furan-4,5-dione induces apoptosis and S-phase arrest of MDA-MB-231 cells through JNK and ERK signaling activation. Toxicol In Vitro. 2010;24:61–70.CrossRefPubMedGoogle Scholar
  58. 58.
    Almeida GM, Duarte TL, Farmer PB, Steward WP, Jones GDD. Multiple end-point analysis reveals cisplatin damage tolerance to be a chemoresistance mechanism in a NSCLC model: implications for predictive testing. Int J Cancer. 2008;122:1810–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Zeng G, Liu J, Chen H, Liu B, Zhang Q, Li M, et al. Dihydromyricetin induces cell cycle arrest and apoptosis in melanoma SK-MEL-28 cells. Oncol Rep Spandidos Publ. 2014;31:2713–9.Google Scholar
  60. 60.
    Yu Y-H, Kuo H-P, Hsieh H-H, Li J-W, Hsu W-H, Chen S-J, et al. Ganoderma tsugae induces S phase arrest and apoptosis in doxorubicin-resistant lung adenocarcinoma H23/0.3 cells via modulation of the PI3K/Akt signaling pathway. Evid Based Complement Alternat Med. 2012;2012:1–13.Google Scholar
  61. 61.
    Gartel AL, Serfas MS, Tyner AL. p21—negative regulator of the cell cycle. Proc Soc Exp Biol Med. 1996;213:138–49.CrossRefPubMedGoogle Scholar
  62. 62.
    Chai Y, Lee H-J, Shaik AA, Nkhata K, Xing C, Zhang J, et al. Penta-O-galloyl-beta-D-glucose induces G1 arrest and DNA replicative S-phase arrest independently of cyclin-dependent kinase inhibitor 1A, cyclin-dependent kinase inhibitor 1B and P53 in human breast cancer cells and is orally active against triple negati. Breast Cancer Res. 2010;12:R67.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ekholm SV, Reed SI. Regulation of G1 cyclin-dependent kinases in the mammalian cell cycle. Curr Opin Cell Biol. 2000;12:676–84.CrossRefPubMedGoogle Scholar
  64. 64.
    Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nat Nat Publ Group. 2001;411:342–8.Google Scholar
  65. 65.
    Woo RA, Poon RYC. Cyclin-dependent kinases and s phase control in mammalian cells. Cell Cycle Landes Biosci. 2003;2:315–23.CrossRefGoogle Scholar
  66. 66.
    Takahashi T, Yamasaki F, Sudo T, Itamochi H, Adachi S, Tamamori-Adachi M, et al. Cyclin A-associated kinase activity is needed for paclitaxel sensitivity. Mol Cancer Ther. 2005;4:1039–46.CrossRefPubMedGoogle Scholar
  67. 67.
    Michalides R, van Tinteren H, Balkenende A, Vermorken JB, Benraadt J, Huldij J, et al. Cyclin A is a prognostic indicator in early stage breast cancer with and without tamoxifen treatment. Br J Cancer Cancer Res Campaign. 2002;86:402–8.Google Scholar
  68. 68.
    Bukholm IR, Bukholm G, Nesland JM. Over-expression of cyclin A is highly associated with early relapse and reduced survival in patients with primary breast carcinomas. Int J Cancer. 2001;93:283–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol. 2001;13:555–62.CrossRefPubMedGoogle Scholar
  70. 70.
    Gilmore AP. Anoikis. Cell Death Differ. 2005;2(12Suppl):1473–7.CrossRefGoogle Scholar
  71. 71.
    Zhang Z, Vuori K, Reed JC, Ruoslahti E. The alpha 5 beta 1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc Natl Acad Sci U S A. 1995;92:6161–5.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Bouillet P, Strasser A. BH3-only proteins—evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. J Cell Sci. 2002;115(Pt 8):1567–74.PubMedGoogle Scholar
  73. 73.
    Dotto GP. p21WAF1/Cip1: more than a break to the cell cycle? Biochim Biophys Acta Rev Cancer. 2000;1471:M43–56.CrossRefGoogle Scholar
  74. 74.
    Roninson IB. Oncogenic functions of tumour suppressor p21Waf1/Cip1/Sdi1: association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett. 2002;179:1–14.CrossRefPubMedGoogle Scholar
  75. 75.
    Faião-Flores F, Suarez JAQ, Soto-Cerrato V, Espona-Fiedler M, Pérez-Tomás R, Maria DA. Bcl-2 family proteins and cytoskeleton changes involved in DM-1 cytotoxic effect on melanoma cells. Tumour Biol. 2013;34:1235–43.CrossRefPubMedGoogle Scholar
  76. 76.
    Chow J, Norng M, Zhang J, Chai J. TRPV6 mediates capsaicin-induced apoptosis in gastric cancer cells—mechanisms behind a possible new “hot” cancer treatment. Biochim Biophys Acta. 2007;1773:565–76.CrossRefPubMedGoogle Scholar
  77. 77.
    Lu H-F, Chen Y-L, Yang J-S, Yang Y-Y, Liu J-Y, Hsu S-C, et al. Antitumor activity of capsaicin on human colon cancer cells in vitro and colo 205 tumor xenografts in vivo. J Agric Food Chem. 2010;58:12999–3005.CrossRefPubMedGoogle Scholar
  78. 78.
    Amantini C, Mosca M, Nabissi M, Lucciarini R, Caprodossi S, Arcella A, et al. Capsaicin-induced apoptosis of glioma cells is mediated by TRPV1 vanilloid receptor and requires p38 MAPK activation. J Neurochem. 2007;102:977–90.CrossRefPubMedGoogle Scholar
  79. 79.
    Lin C-H, Lu W-C, Wang C-W, Chan Y-C, Chen M-K. Capsaicin induces cell cycle arrest and apoptosis in human KB cancer cells. BMC Complement Altern Med BMC Complement Alternat Med. 2013;13:46.CrossRefGoogle Scholar
  80. 80.
    Stupack DG, Cheresh DA. Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci. 2002;115:3729–38.CrossRefPubMedGoogle Scholar
  81. 81.
    Frisch SM, Francis H. Disruption of epithelial cell–matrix interactions induces apoptosis. J Cell Biol. 1994;124:619–26.CrossRefPubMedGoogle Scholar
  82. 82.
    Meredith JE, Fazeli B, Schwartz MA. The extracellular matrix as a cell survival factor. Mol Biol Cell. 1993;4:953–61.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Reginato MJ, Mills KR, Paulus JK, Lynch DK, Sgroi DC, Debnath J, et al. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat Cell Biol Nat Publ Group. 2003;5:733–40.CrossRefGoogle Scholar
  84. 84.
    Matter ML, Ruoslahti E. A signaling pathway from the alpha5beta1 and alpha(v)beta3 integrins that elevates bcl-2 transcription. J Biol Chem. 2001;276:27757–63.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Adilson Kleber Ferreira
    • 1
  • Maurício Temotheo Tavares
    • 2
  • Kerly Fernanda Mesquita Pasqualoto
    • 3
  • Ricardo Alexandre de Azevedo
    • 1
  • Sarah Fernandes Teixeira
    • 1
  • Wilson Alves Ferreira-Junior
    • 4
  • Ariane Matiello Bertin
    • 1
  • Paulo Luiz de-Sá-Junior
    • 5
  • José Alexandre Marzagão Barbuto
    • 1
    • 6
  • Carlos Rogério Figueiredo
    • 1
  • Yara Cury
    • 4
  • Mariana Celestina Frojuello Costa Bernstorff Damião
    • 2
  • Roberto Parise-Filho
    • 2
  1. 1.Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical SciencesUniversity of Sao PauloSão PauloBrazil
  2. 2.Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical SciencesUniversity of Sao PauloSão PauloBrazil
  3. 3.Biochemistry and Biophysical LaboratoryButantan InstituteSão PauloBrazil
  4. 4.Laboratory of Pain and SignalingButantan InstituteSão PauloBrazil
  5. 5.Laboratory of GeneticsButantan InstituteSão PauloBrazil
  6. 6.Cell and Molecular Therapy Center NUCEL/NETCEM, Faculty of MedicineUniversity of São PauloSão PauloBrazil

Personalised recommendations