Tumor Biology

, Volume 36, Issue 12, pp 9327–9337 | Cite as

The expression of microRNA-34a is inversely correlated with c-MET and CDK6 and has a prognostic significance in lung adenocarcinoma patients

  • Ji Hyung Hong
  • Kang San Roh
  • Sung-Suk Suh
  • Sukchan Lee
  • Sook Whan Sung
  • Jae Kil Park
  • Jae Ho Byun
  • Jin Hyoung Kang
Research Article


We aimed to establish whether the expression of microRNA-34a (miR-34a) is correlated with that of c-MET and G1 phase regulators such as cyclin dependent kinase (CDK) 4, CDK6, and cyclin D (CCND) 1 in non-small cell lung cancer (NSCLC), and whether a relationship exists between miR-34a expression and both clinicopathologic factors and recurrence-free survival (RFS). For 58 samples archived from NSCLC patients, we measured the expression of miR-34a and c-MET, CDK4/6, and CCND1 by quantitative RT-PCR and assessed the relationship between miR-34a expression, clinicopathological factors, and RFS. The expression of miR-34a was significantly lower in squamous cell tumors (P < 0.001) and in tumors associated with lymphatic invasion (P = 0.001). We found significant inverse correlations between miR-34a and c-MET (R = −0.316, P = 0.028) and CDK6 expression (R = −0.4582, P = 0.004). RFS were longer in adenocarcinoma patients with high miR-34a expression than in those with low miR-34a expression (55.6 vs. 21.6 months; P = 0.020). With univariate analysis, statistically significant prognostic factors for RFS in adenocarcinoma patients were miR-34a expression (Relative risk (RR), 8.14; P = 0.049), TNM stage (RR, 13.55; P = 0.001), LN metastasis (RR, 4.19; P = 0.043), and the presence of lymphatic invasion (RR, 7.05; P = 0.015). In multivariate analysis, only miR-34a was prognostic for RFS (RR, 11.5; P = 0.027). miR-34a expression was inversely correlated with that of c-MET and CDK6 in NSCLC, and had prognostic significance for RFS, especially in adenocarcinoma patients.


miR-34a c-MET Cyclin-dependent kinase 6 Adenocarcinoma of the lung 




Conflicts of interest



  1. 1.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.CrossRefPubMedGoogle Scholar
  2. 2.
    Pisters KM, Evans WK, Azzoli CG, Kris MG, Smith CA, Desch CE, et al. Cancer Care Ontario and American Society of Clinical Oncology adjuvant chemotherapy and adjuvant radiation therapy for stages I–IIIA resectable non small-cell lung cancer guideline. J Clin Oncol. 2007;25:5506–18.CrossRefPubMedGoogle Scholar
  3. 3.
    Brundage MD, Davies D, Mackillop WJ. Prognostic factors in non-small cell lung cancer: a decade of progress. Chest. 2002;122:1037–57.CrossRefPubMedGoogle Scholar
  4. 4.
    Kim VN. Small RNAs: classification, biogenesis, and function. Mol Cells. 2005;19:1–15.CrossRefPubMedGoogle Scholar
  5. 5.
    Lee YS, Dutta A. MicroRNAs in cancer. Annu Rev Pathol. 2009;4:199–227.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.CrossRefPubMedGoogle Scholar
  7. 7.
    Dang Y, Luo D, Rong M, Chen G. Underexpression of miR-34a in hepatocellular carcinoma and its contribution towards enhancement of proliferating inhibitory effects of agents targeting c-MET. PLoS One. 2013;8, e61054.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Javeri A, Ghaffarpour M, Taha MF, Houshmand M. Downregulation of miR-34a in breast tumors is not associated with either p53 mutations or promoter hypermethylation while it correlates with metastasis. Med Oncol. 2013;30:413.CrossRefPubMedGoogle Scholar
  9. 9.
    Nalls D, Tang SN, Rodova M, Srivastava RK, Shankar S. Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells. PLoS One. 2011;6, e24099.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Siemens H, Neumann J, Jackstadt R, Mansmann U, Horst D, Kirchner T, et al. Detection of miR-34a promoter methylation in combination with elevated expression of c-Met and beta-catenin predicts distant metastasis of colon cancer. Clin Cancer Res. 2013;19:710–20.CrossRefPubMedGoogle Scholar
  11. 11.
    Bandi N, Vassella E. miR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Mol Cancer. 2011;10:55.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Körner H, et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle. 2008;7:2591–600.CrossRefPubMedGoogle Scholar
  13. 13.
    Gallardo E, Navarro A, Vinolas N, Marrades RM, Diaz T, Gel B, et al. miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer. Carcinogenesis. 2009;30:1903–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Nakatani F, Ferracin M, Manara MC, Ventura S, Del Monaco V, Ferrari S, et al. miR-34a predicts survival of Ewing’s sarcoma patients and directly influences cell chemo-sensitivity and malignancy. J Pathol. 2012;226:796–805.CrossRefPubMedGoogle Scholar
  15. 15.
    Kasinski AL, Slack FJ. miRNA-34 prevents cancer initiation and progression in a therapeutically resistant K-ras and p53-induced mouse model of lung adenocarcinoma. Cancer Res. 2012;72:5576–87.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17:211–5.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, et al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res. 2010;70:5923–30.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Xue W, Dahlman JE, Tammela T, Khan OF, Sood S, Dave A, et al. Small RNA combination therapy for lung cancer. Proc Natl Acad Sci U S A. 2014;111:E3553–61.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447:1130–4.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R, et al. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett. 2008;582:1564–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A. 2008;105:13421–6.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yamamura S, Saini S, Majid S, Hirata H, Ueno K, Deng G, et al. MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells. PLoS One. 2012;7, e29722.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hong SW, Jung KH, Park BH, Zheng HM, Lee HS, Choi MJ, et al. KRC-408, a novel c-Met inhibitor, suppresses cell proliferation and angiogenesis of gastric cancer. Cancer Lett. 2013;332:74–82.CrossRefPubMedGoogle Scholar
  24. 24.
    Que W, Chen J. Knockdown of c-Met inhibits cell proliferation and invasion and increases chemosensitivity to doxorubicin in human multiple myeloma U266 cells in vitro. Mol Med Rep. 2011;4:343–9.PubMedGoogle Scholar
  25. 25.
    Jiang Q, Mai C, Yang H, Wu Q, Hua S, Yan C, et al. Nuclear expression of CDK4 correlates with disease progression and poor prognosis in human nasopharyngeal carcinoma. Histopathology. 2013;64:722–30.CrossRefPubMedGoogle Scholar
  26. 26.
    Wu A, Wu B, Guo J, Luo W, Wu D, Yang H, et al. Elevated expression of CDK4 in lung cancer. J Transl Med. 2011;9:38.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gao W, Yu Y, Cao H, Shen H, Li X, Pan S, et al. Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother. 2010;64:399–408.CrossRefPubMedGoogle Scholar
  28. 28.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Papadogianni D, Soulitzis N, Delakas D, Spandidos DA. Expression of p53 family genes in urinary bladder cancer: correlation with disease aggressiveness and recurrence. Tumour Biol. 2014;35:2481–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.CrossRefPubMedGoogle Scholar
  31. 31.
    Guessous F, Zhang Y, Kofman A, Catania A, Li Y, Schiff D, et al. microRNA-34a is tumor suppressive in brain tumors and glioma stem cells. Cell Cycle. 2010;9:1031–6.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Marino MT, Grilli A, Baricordi C, Manara MC, Ventura S, Pinca RS, et al. Prognostic significance of miR-34a in Ewing sarcoma is associated with cyclin D1 and ki-67 expression. Ann Oncol. 2014;25:2080–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Lu Y, Govindan R, Wang L, Liu PY, Goodgame B, Wen W, et al. MicroRNA profiling and prediction of recurrence/relapse-free survival in stage I lung cancer. Carcinogenesis. 2012;33:1046–54.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Landi MT, Zhao Y, Rotunno M, Koshiol J, Liu H, Bergen AW, et al. MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res. 2010;16:430–41.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.CrossRefPubMedGoogle Scholar
  36. 36.
    Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Guo Y, Li S, Qu J, Wang S, Dang Y, Fan J, et al. MiR-34a inhibits lymphatic metastasis potential of mouse hepatoma cells. Mol Cell Biochem. 2011;354:275–82.CrossRefPubMedGoogle Scholar
  38. 38.
    Al-Alao BS, Gately K, Nicholson S, McGovern E, Young VK, O'Byrne KJ. Prognostic impact of vascular and lymphovascular invasion in early lung cancer. Asian Cardiovasc Thorac Ann. 2014;22:55–64.CrossRefPubMedGoogle Scholar
  39. 39.
    Ozmen F, Ozmen MM, Ozdemir E, Moran M, Seçkin S, Guc D, et al. Relationship between LYVE-1, VEGFR-3 and CD44 gene expressions and lymphatic metastasis in gastric cancer. World J Gastroenterol. 2011;17:3220–8.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhao H, Ma B, Wang Y, Han T, Zheng L, Sun C, et al. miR-34a inhibits the metastasis of osteosarcoma cells by repressing the expression of CD44. Oncol Rep. 2013;29:1027–36.PubMedGoogle Scholar
  41. 41.
    Tsou HK, Chen HT, Hung YH, Chang CH, Li TM, Fong YC, et al. HGF and c-Met interaction promotes migration in human chondrosarcoma cells. PLoS One. 2013;8, e53974.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lin YM, Huang YL, Fong YC, Tsai CH, Chou MC, Tang CH. Hepatocyte growth factor increases vascular endothelial growth factor-A production in human synovial fibroblasts through c-Met receptor pathway. PLoS One. 2012;7, e50924.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Dai Y, Siemann DW. Constitutively active c-Met kinase in PC-3 cells is autocrine-independent and can be blocked by the Met kinase inhibitor BMS-777607. BMC Cancer. 2012;12:198.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Inagaki Y, Qi F, Gao J, Qu X, Hasegawa K, Sugawara Y, et al. Effect of c-Met inhibitor SU11274 on hepatocellular carcinoma cell growth. Biosci Trends. 2011;5:52–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Syed ZA, Yin W, Hughes K, Gill JN, Shi R, Clifford JL. HGF/c-met/Stat3 signaling during skin tumor cell invasion: indications for a positive feedback loop. BMC Cancer. 2011;11:180.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ma PC, Jagadeeswaran R, Jagadeesh S, Tretiakova MS, Nallasura V, Fox EA, et al. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res. 2005;65:1479–88.CrossRefPubMedGoogle Scholar
  47. 47.
    Mukhopadhyay I, Sausville EA, Doroshow JH, Roy KK. Molecular mechanism of adaphostin-mediated G1 arrest in prostate cancer (PC-3) cells: signaling events mediated by hepatocyte growth factor receptor, c-Met, and p38 MAPK pathways. J Biol Chem. 2006;281:37330–44.CrossRefPubMedGoogle Scholar
  48. 48.
    Mudduluru G, Ceppi P, Kumarswamy R, Scagliotti GV, Papotti M, Allgayer H. Regulation of Axl receptor tyrosine kinase expression by miR-34a and miR-199a/b in solid cancer. Oncogene. 2011;30:2888–99.CrossRefPubMedGoogle Scholar
  49. 49.
    Jesionek-Kupnicka D, Szybka M, Malachowska B, Fendler W, Potemski P, Piaskowski S, et al. TP53 promoter methylation in primary glioblastoma: relationship with TP53 mRNA and protein expression and mutation status. DNA Cell Biol. 2014;33:217–26.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Ji Hyung Hong
    • 1
  • Kang San Roh
    • 2
  • Sung-Suk Suh
    • 3
  • Sukchan Lee
    • 2
  • Sook Whan Sung
    • 4
  • Jae Kil Park
    • 4
  • Jae Ho Byun
    • 1
  • Jin Hyoung Kang
    • 1
  1. 1.Department of Internal Medicine, College of Medicine, Seoul St. Mary’s HospitalThe Catholic University of KoreaSeoulRepublic of Korea
  2. 2.Department of Genetic EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
  3. 3.South Sea Environment Research DepartmentKorea Institute of Ocean Science and TechnologyGeojeRepublic of Korea
  4. 4.Department of Thoracic Surgery, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea

Personalised recommendations