Advertisement

Tumor Biology

, Volume 36, Issue 11, pp 8789–8795 | Cite as

miR-449b rs10061133 and miR-4293 rs12220909 polymorphisms are associated with decreased esophageal squamous cell carcinoma in a Chinese population

  • Ping Zhang
  • Jianguo Wang
  • Ting Lu
  • Xiaofeng Wang
  • Yabiao Zheng
  • Shicheng Guo
  • Yajun Yang
  • Mengyun Wang
  • Vijay Kumar Kolluri
  • Lixin Qiu
  • Fangyuan Shen
  • Lixia Fan
  • Jin Li
  • Yanong Wang
  • Qingyi Wei
  • Li Jin
  • Jiucun Wang
  • Minghua Wang
Research Article

Abstract

Esophageal cancer is one of the most aggressive cancers in the world, 70 % of which are from China and esophageal squamous cell carcinoma (ESCC) is the major histopathological form (>90 %). The single nucleotide polymorphisms (SNPs) in mature sequence of microRNA (miRNA) (mmSNPs) could cause the alteration of microRNA expression and contribute to the susceptibility of cancers. To evaluate the association between mmSNPs and ESCC, a case-control study including 773 patients with ESCC and 882 gender- and age-matched controls was carried out to investigate the association of five mmSNPs (miR-449b rs10061133, miR-4293 rs12220909, miR-608 rs4919510, miR-627 rs2620381, and miR-646 rs6513497) with ESCC susceptibility. As a result, two SNPs, miR-449b rs10061133 and miR-4293 rs12220909, were associated with decreased ESCC risk. For miR-449b rs10061133 A>G, individuals carrying GG genotype had an odds ratio (OR) of 0.77 (95 % confidence interval (95 % CI) 0.62–0.97) compared with individuals with AA genotype. In the recessive model, the GG genotype also showed a protective effect on ESCC (OR = 0.78, 95 % CI 0.63–0.97). For miR-4293 rs12220909 G>C, the heterozygous genotype GC was associated with a decreased ESCC risk (OR = 0.77, 95 % CI 0.61–0.97) compared with GG genotype. The C allele conferred 23 % decrease in ESCC risk compared with the G allele in the allelic model (95 % CI 0.63–0.93). In the dominant model, the GC/CC genotypes decreased the risk of ESCC (adjusted OR = 0.77, 95 % CI 0.61–0.96). This study provides the first evidence that miR-449b rs10061133 and miR-4293 rs12220909 are associated with ESCC risk in Chinese population.

Keywords

miRNA mmSNPs Esophageal squamous cell carcinoma Susceptibility 

Notes

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (grant numbers 81071957), the Key Project in the National Science & Technology Pillar Program (grant number 2011BAI09B00), the Suzhou City Science and Technology Program (grant number SYS201419), the Priority Academic Program Development of Jiangsu Higher Education Institutions of China (PAPD), and the funds from “China’s Thousand Talents Program” at Fudan University.

Conflicts of interest

None

References

  1. 1.
    Liu J, Li M, Li Z, Zuo XL, Li CQ, Dong YY, et al. Learning curve and interobserver agreement of confocal laser endomicroscopy for detecting precancerous or early-stage esophageal squamous cancer. PLoS One. 2014;9(6), e99089. doi: 10.1371/journal.pone.0099089.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Vizcaino AP, Moreno V, Lambert R, Parkin DM. Time trends incidence of both major histologic types of esophageal carcinomas in selected countries, 1973–1995. Int J Cancer. 2002;99(6):860–8. doi: 10.1002/ijc.10427.CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang J, Huang X, Xiao J, Yang Y, Zhou Y, Wang X, et al. Pri-miR-124 rs531564 and pri-miR-34b/c rs4938723 polymorphisms are associated with decreased risk of esophageal squamous cell carcinoma in Chinese populations. PLoS One. 2014;9(6), e100055. doi: 10.1371/journal.pone.0100055.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8. doi: 10.1038/nature03702.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang Y, Dai J, Deng H, Wan H, Liu M, Wang J, et al. miR-1228 promotes the proliferation and metastasis of hepatoma cells through a p53 forward feedback loop. Br J Cancer. 2014. doi: 10.1038/bjc.2014.593.Google Scholar
  6. 6.
    Lin L, Liang H, Wang Y, Yin X, Hu Y, Huang J, et al. microRNA-141 inhibits cell proliferation and invasion and promotes apoptosis by targeting hepatocyte nuclear factor-3beta in hepatocellular carcinoma cells. BMC Cancer. 2014;14(1):879. doi: 10.1186/1471-2407-14-879.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhao ZG, Jin JY, Zhang AM, Zhang LP, Wang XX, Sun JG, et al. MicroRNA profile of tumorigenic cells during carcinogenesis of lung adenocarcinoma. J Cell Biochem. 2014. doi: 10.1002/jcb.24999.PubMedCentralGoogle Scholar
  8. 8.
    Wei WJ, Wang YL, Li DS, Wang Y, Wang XF, Zhu YX, et al. Association study of single nucleotide polymorphisms in mature microRNAs and the risk of thyroid tumor in a Chinese population. Endocrine. 2014. doi: 10.1007/s12020-014-0467-8.Google Scholar
  9. 9.
    Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10(6):389–402. doi: 10.1038/nrc2867.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Huang AJ, Yu KD, Li J, Fan L, Shao ZM. Polymorphism rs4919510:C>G in mature sequence of human microRNA-608 contributes to the risk of HER2-positive breast cancer but not other subtypes. PLoS One. 2012;7(5), e35252. doi: 10.1371/journal.pone.0035252.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Martin A, Jones A, Bryar PJ, Mets M, Weinstein J, Zhang G, et al. MicroRNAs-449a and -449b exhibit tumor suppressive effects in retinoblastoma. Biochem Biophys Res Commun. 2013;440(4):599–603. doi: 10.1016/j.bbrc.2013.09.117.CrossRefPubMedGoogle Scholar
  12. 12.
    Wu J, Bao J, Kim M, Yuan S, Tang C, Zheng H, et al. Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proc Natl Acad Sci U S A. 2014;111(28):E2851–7. doi: 10.1073/pnas.1407777111.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bou Kheir T, Futoma-Kazmierczak E, Jacobsen A, Krogh A, Bardram L, Hother C, et al. miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol Cancer. 2011;10:29. doi: 10.1186/1476-4598-10-29.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lin M, Gu J, Eng C, Ellis LM, Hildebrandt MA, Lin J, et al. Genetic polymorphisms in MicroRNA-related genes as predictors of clinical outcomes in colorectal adenocarcinoma patients. Clin Cancer Res. 2012;18(14):3982–91. doi: 10.1158/1078-0432.CCR-11-2951.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Li W, Liu M, Feng Y, Xu YF, Huang YF, Che JP, et al. Downregulated miR-646 in clear cell renal carcinoma correlated with tumour metastasis by targeting the nin one binding protein (NOB1). Br J Cancer. 2014;111(6):1188–200. doi: 10.1038/bjc.2014.382.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang R, Zhang J, Jiang W, Ma Y, Li W, Jin B, et al. Association between a variant in microRNA-646 and the susceptibility to hepatocellular carcinoma in a large-scale population. Sci World J. 2014;2014:312704. doi: 10.1155/2014/312704.Google Scholar
  17. 17.
    Padi SK, Zhang Q, Rustum YM, Morrison C, Guo B. MicroRNA-627 mediates the epigenetic mechanisms of vitamin D to suppress proliferation of human colorectal cancer cells and growth of xenograft tumors in mice. Gastroenterology. 2013;145(2):437–46. doi: 10.1053/j.gastro.2013.04.012.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gong J, Tong Y, Zhang HM, Wang K, Hu T, Shan G, et al. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum Mutat. 2012;33(1):254–63. doi: 10.1002/humu.21641.CrossRefPubMedGoogle Scholar
  19. 19.
    Wang X, Lu M, Qian J, Yang Y, Li S, Lu D, et al. Rationales, design and recruitment of the Taizhou Longitudinal Study. BMC Public Health. 2009;9:223. doi: 10.1186/1471-2458-9-223.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fang Y, Gu X, Li Z, Xiang J, Chen Z. miR-449b inhibits the proliferation of SW1116 colon cancer stem cells through downregulation of CCND1 and E2F3 expression. Oncol Rep. 2013;30(1):399–406. doi: 10.3892/or.2013.2465.PubMedGoogle Scholar
  21. 21.
    Ma L, Li N, He X, Zhang Q. miR-449b and miR-34c on inducing down-regulation of cell cycle-related proteins and cycle arrests in SKOV3-ipl cell, an ovarian cancer cell line. J Peking Univ Health Sci. 2011;43(1):129–33.Google Scholar
  22. 22.
    Weng W, Yin J, Zhang Y, Qiu J, Wang X. Metastasis-associated protein 1 promotes tumor invasion by downregulation of E-cadherin. Int J Oncol. 2014;44(3):812–8. doi: 10.3892/ijo.2014.2253.PubMedGoogle Scholar
  23. 23.
    Hu YC, Lam KY, Law S, Wong J, Srivastava G. Profiling of differentially expressed cancer-related genes in esophageal squamous cell carcinoma (ESCC) using human cancer cDNA arrays: overexpression of oncogene MET correlates with tumor differentiation in ESCC. Clin Cancer Res. 2001;7(11):3519–25.PubMedGoogle Scholar
  24. 24.
    Li H, Xiao W, Ma J, Zhang Y, Li R, Ye J, et al. Dual high expression of STAT3 and cyclinD1 is associated with poor prognosis after curative resection of esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 2014;7(11):7989–98.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Yang X, Feng M, Jiang X, Wu Z, Li Z, Aau M, et al. miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev. 2009;23(20):2388–93. doi: 10.1101/gad.1819009.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Du M, Lu D, Wang Q, Chu H, Tong N, Pan X, et al. Genetic variations in microRNAs and the risk and survival of renal cell cancer. Carcinogenesis. 2014;35(7):1629–35. doi: 10.1093/carcin/bgu082.CrossRefPubMedGoogle Scholar
  27. 27.
    Xu J, Hu Z, Xu Z, Gu H, Yi L, Cao H, et al. Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Hum Mutat. 2009;30(8):1231–6. doi: 10.1002/humu.21044.CrossRefPubMedGoogle Scholar
  28. 28.
    Jia Y, Wang Y, Xie J. The Hedgehog pathway: role in cell differentiation, polarity and proliferation. Arch Toxicol. 2015. doi: 10.1007/s00204-014-1433-1.Google Scholar
  29. 29.
    Zhu W, You Z, Li T, Yu C, Tao G, Hu M, et al. Correlation of hedgehog signal activation with chemoradiotherapy sensitivity and survival in esophageal squamous cell carcinomas. Jpn J Clin Oncol. 2011;41(3):386–93. doi: 10.1093/jjco/hyq217.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Ping Zhang
    • 1
  • Jianguo Wang
    • 1
    • 2
  • Ting Lu
    • 1
  • Xiaofeng Wang
    • 3
  • Yabiao Zheng
    • 1
  • Shicheng Guo
    • 3
  • Yajun Yang
    • 3
  • Mengyun Wang
    • 4
    • 5
  • Vijay Kumar Kolluri
    • 1
  • Lixin Qiu
    • 5
    • 6
  • Fangyuan Shen
    • 1
  • Lixia Fan
    • 1
  • Jin Li
    • 5
    • 6
  • Yanong Wang
    • 7
  • Qingyi Wei
    • 4
    • 5
  • Li Jin
    • 3
  • Jiucun Wang
    • 3
  • Minghua Wang
    • 1
  1. 1.Department of Biochemistry and Molecular Biology, Medical CollegeSoochow UniversitySuzhouChina
  2. 2.Department of Medical Genetics, Medical CollegeSoochow UniversitySuzhouChina
  3. 3.MOE Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
  4. 4.Cancer Research LaboratoryFudan University Shanghai Cancer CenterShanghaiChina
  5. 5.Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiChina
  6. 6.Department of Medical OncologyFudan University Shanghai Cancer CenterShanghaiChina
  7. 7.Department of Gastric Cancer & Soft Tissue Sarcoma SurgeryFudan University Shanghai Cancer CenterShanghaiChina

Personalised recommendations