Skip to main content

Advertisement

Log in

Mdig, a lung cancer-associated gene, regulates cell cycle progression through p27KIP1

  • Research Article
  • Published:
Tumor Biology

Abstract

Mineral dust-induced gene (mdig) can accelerate cell proliferation. The aim of this study is to investigate the mechanism by which mdig regulates cell proliferation. A549 cells were transfected with siRNA specifically targeting mdig. Cell proliferation and cell cycle progression were measured using MTT assay and cell cycle analysis, respectively. Furthermore, real-time reverse transcription quantitative–polymerase chain reaction (RT-qPCR) was performed in A549 cells transfected with mdig siRNA to examine the expression levels of the cell cycle related genes such as p18INK4c, p19INK4d, p21WAF/CIP1, p27KIP1, p57KIP2, cyclin D1, and cyclin E. To further explore the effect of mdig on p27KIP1, the expression levels of total p27KIP1 and its subtypes pT187-p27KIP1 and pS10-p27KIP1 were assessed by Western blotting. In vivo, Western blotting was performed to check the expression levels of mdig and p27KIP1 in human lung cancer tissues, para-cancerous normal lung tissues, and para-bronchial stumps. Knockdown of mdig induced increases in p27KIP1, both on mRNA and protein levels. Furthermore, the phosphorylation of p27KIP1 at its Thr187 site was also inhibited. Importantly, in lung cancer tissues, upregulation of mdig expression accompanies with the downregulation of p27KIP1 expression and in bronchial stump, vice versa. The data suggest that mdig-mediated inhibition of p27KIP1 is important for cell proliferation and tumor formation and reveal therapeutic potential of p27KIP1 for lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. de Groot P, Munden RF. Lung cancer epidemiology, risk factors, and prevention. Radiol Clin North Am. 2012;50(5):863–76.

    Article  PubMed  Google Scholar 

  2. She J, Yang P, Hong Q, Bai C. Lung cancer in China: challenges and interventions. Chest. 2013;143(4):1117–26.

    Article  PubMed  Google Scholar 

  3. Zhang Y, Yongju L, Yuan B-Z, Castranova V, Shi X, Stauffer JL, et al. The human mineral dust-induced gene, MDIG, is a cell growth regulating gene associated with lung cancer. Oncogene. 2005;24(31):4873–82.

    Article  CAS  PubMed  Google Scholar 

  4. Tsuneoka M, Koda Y, Soejima M, Teye K, Kimura H. A novel myc target gene, mina53, that is involved in cell proliferation. J Biol Chem. 2002;277(38):35450–9.

    Article  CAS  PubMed  Google Scholar 

  5. Yongju L, Chang Q, Zhang Y, Beezhold K, Rojanasakul Y, Zhao H, et al. Lung cancer-associated JmjC domain protein mdig suppresses formation of tri-methyl lysine 9 of histone H3. Cell Cycle. 2009;8(13):2101–9.

    Article  Google Scholar 

  6. Tsuneoka M, Fujita H, Arima N, Teye K, Okamura T, Inutsuka H, et al. Mina53 as a potential prognostic factor for esophageal squamous cell carcinoma. Clin Cancer Res. 2004;10(21):7347–56.

    Article  CAS  PubMed  Google Scholar 

  7. Teye K, Tsuneoka M, Arima N, Koda Y, Nakamura Y, Ueta Y, et al. Increased expression of a myc target gene mina53 in human colon cancer. Am J Pathol. 2004;164(1):205–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ishizaki H, Yano H, Tsuneoka M, Ogasawara S, Akiba J, Nishida N, et al. Overexpression of the myc target gene mina53 in advanced renal cell carcinoma. Pathol Int. 2007;57(10):672–80.

    Article  CAS  PubMed  Google Scholar 

  9. Komiya K, Sueoka-Aragane N, Sato A, Hisatomi T, Sakuragi T, Mitsuoka M, et al. Expression of mina53, a novel c-myc target gene, is a favorable prognostic marker in early stage lung cancer. Lung Cancer. 2010;69(2):232–8.

    Article  PubMed  Google Scholar 

  10. Miaomiao Y, Sun J, Thakur C, Chen B, Yongju L, Zhao H, et al. Paradoxical roles of mineral dust induced gene on proliferation and migration/invasion. Plos One. 2014;9(2):e87998.

    Article  Google Scholar 

  11. Eymin B, Gazzeri S. Role of cell cycle regulators in lung carcinogenesis. Cell Adh Migr. 2009;4(1):114–23.

    Article  Google Scholar 

  12. Larrea MD, Wander SA, Slingerland JM. p27 as Jekyll and Hyde: regulation of cell cycle and cell motility. Cell Cycle. 2009;8(21):3455–61.

    Article  CAS  PubMed  Google Scholar 

  13. Vincenzi B, Schiavon G, Silletta M, Santini D, Perrone G, Di Marino M, et al. Cell cycle alterations and lung cancer. Histol Histopathol. 2006;21(4):423–35.

    CAS  PubMed  Google Scholar 

  14. Komiya K, Sueoka-Aragane N, Sato A, Hisatomi T, Sakuragi T, Mitsuoka M, et al. Mina53, a novel c-myc target gene, is frequently expressed in lung cancers and exerts oncogenic property in NIH/3 T3 cells. J Cancer Res Clin Oncol. 2010;136(3):465–73.

    Article  CAS  PubMed  Google Scholar 

  15. Morgan D. The cell cycle: principles of control. London: New Science Press Ltd; 2007.

    Google Scholar 

  16. MacLachlan TK, Sang N, Giordano A. Cyclins, cyclin-dependent kinases and cdk inhibitors: implications in cell cycle control and cancer. Crit Rev Eukaryot Gene Expr. 1995;5(2):127–56.

    Article  CAS  PubMed  Google Scholar 

  17. Esposito V, Baldi A, Tonini G, Vincenzi B, Santini M, Ambrogi V, et al. Analysis of cell cycle regulator proteins in non-small cell lung cancer. J Clin Pathol. 2004;57(1):58–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Osada H, Takahashi T. Genetic alterations of multiple tumor suppressors and oncogenes in the carcinogenesis and progression of lung cancer. Oncogene. 2002;21(48):7421–34.

    Article  CAS  PubMed  Google Scholar 

  19. Ogasawara S, Komuta M, Nakashima O, Akiba J, Tsuneoka M, Yano H. Accelerated expression of a myc target gene mina53 in aggressive hepatocellular carcinoma. Hepatol Res. 2010;40(4):330–6.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Q, Hu CM, Yuan YS, He CH, Zhao Q, Liu NZ. Expression of mina53 and its significance in gastric carcinoma. Int J Biol Markers. 2008;23(2):83–8.

    Article  CAS  PubMed  Google Scholar 

  21. Teye K, Arima N, Nakamura Y, Sakamoto K, Sueoka E, Kimura H, et al. Expression of myc target gene mina53 in subtypes of human lymphoma. Oncol Rep. 2007;18(4):841–8.

    CAS  PubMed  Google Scholar 

  22. Fukahori S, Yano H, Tsuneoka M, Tanaka Y, Yagi M, Kuwano M, et al. Immunohistochemical expressions of Cap43 and mina53 proteins in neuroblastoma. J Pediatr Surg. 2007;42(11):1831–40.

    Article  PubMed  Google Scholar 

  23. Kuratomi K, Yano H, Tsuneoka M, Sakamoto K, Kusukawa J, Kojiro M. Immunohistochemical expression of mina53 and Ki67 proteins in human primary gingival squamous cell carcinoma. Kurume Med J. 2006;53(3–4):71–8.

    Article  CAS  PubMed  Google Scholar 

  24. Gursky S, Olopade OI, Rowley JD. Identification of a 1.2 Kb cDNA fragment from a region on 9p21 commonly deleted in multiple tumor types. Cancer Genet Cytogenet. 2001;129(2):93–101.

    Article  CAS  PubMed  Google Scholar 

  25. Franklin DS, Godfrey VL, Lee H, Kovalev GI, Schoonhoven R, Chen-Kiang S, et al. CDK inhibitors p18INK4c and p27Kip1 mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev. 1998;12(18):2899–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Slingerland J, Pagano M. Regulation of the CDK inhibitor p27 and its deregulation in cancer. J Cell Physiol. 2000;183(1):10–7.

    Article  CAS  PubMed  Google Scholar 

  27. Ludger H, Steven I. Reed. Science. 1996;271(5257):1861–4.

    Article  Google Scholar 

  28. Medema RH, Kops GJP, Bos JL, Burgering BMT. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27KIP1. Nature. 2000;404(6779):782–7.

    Article  CAS  PubMed  Google Scholar 

  29. Tang L, Wang Y, Strom A, Gustafsson J-A, Guan X. Lapatinib induces p27(KIP1)-dependent G1 arrest through both transcriptional and post-translational mechanisms. Cell Cycle. 2013;12(16):2665–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ling Y-H, Li T, Yuan Z, Haigentz M, Haigentz Jr M, Weber TK, et al. Erlotinib, an effective epidermal growth factor receptor tyrosine kinase inhibitor, induces p27KIP1 up-regulation and nuclear translocation in association with cell growth inhibition and G1/S phase arrest in human non-small-cell lung. Mol Pharmacol. 2007;72(2):248–58.

    Article  CAS  PubMed  Google Scholar 

  31. Catzavelos C, Tsao M-S, DeBoer G, Bhattacharya N, Shepherd FA, Slingerland JM. Reduced expression of the cell cycle inhibitor p27KIP1 in non-small cell lung carcinoma: a prognostic factor independent of Ras. Cancer Res. 1999;59(3):684–8.

    CAS  PubMed  Google Scholar 

  32. Zhang D, Tari AM, Akar U, Arun BK, LaFortune TA, Nieves-Alicea R, et al. Silencing kinase-interacting stathmin gene enhances erlotinib sensitivity by inhibiting Ser10 p27 phosphorylation in epidermal growth factor receptor expressing breast cancer. Mol Cancer Ther. 2010;9(11):3090–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE. Cyclin E-CDK2 is a regulator of p27KIP1. Genes Dev. 1997;11(11):1464–78.

    Article  CAS  PubMed  Google Scholar 

  34. Park K-H, Seol JY, Kim T-Y, Yoo C-G, Kim YW, Han SK, et al. An adenovirus expressing mutant p27 showed more potent antitumor effects than adenovirus-p27 wild type. Cancer Res. 2001;61(16):6163–9.

    CAS  PubMed  Google Scholar 

  35. Wang D, He F, Zhang L, Zhang F, Wang Q, Qian X, et al. The role of p27KIP1 phosphorylation at serine 10 in the migration of malignant glioma cells in vitro. Neoplasma. 2011;58(1):65–73.

    CAS  PubMed  Google Scholar 

  36. Kotake Y, Nakayama K, Ishida N, Nakayama KI. Role of serine 10 phosphorylation in p27 stabilization revealed by analysis of p27 knock-in mice harboring a serine 10 mutation. J Biol Chem. 2005;280(2):1095–102.

    Article  CAS  PubMed  Google Scholar 

  37. Besson A, Gurian-West M, Chen X, Kelly-Spratt KS, Kemp CJ, Roberts JM. A pathway in quiescent cells that controls p27KIP1 stability, subcellular localization, and tumor suppression. Genes Dev. 2006;20(1):47–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No.: 81472194) and Bureau of Science and Technology of Shenyang (Grant No.: F12-193-9-02) to Hongwen Zhao.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwen Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, D., Guo, D., Li, W. et al. Mdig, a lung cancer-associated gene, regulates cell cycle progression through p27KIP1 . Tumor Biol. 36, 6909–6917 (2015). https://doi.org/10.1007/s13277-015-3397-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3397-z

Keywords

Navigation