Tumor Biology

, Volume 36, Issue 9, pp 6789–6795 | Cite as

Ginsenoside Rh2 inhibits metastasis of glioblastoma multiforme through Akt-regulated MMP13

  • Ning Guan
  • Xiaochuan Huo
  • Zhenxing Zhang
  • Shoudan Zhang
  • Junsheng Luo
  • Wenshi Guo
Research Article


Glioblastoma multiforme (GBM) is the most malignant type of primary brain tumor. Although the growth of the tumor cells in a relatively closed space may partially account for its malignancy, highly invasive nature of glioblastoma cells has been suggested to be the main reason for the failure of current therapeutic approaches. Ginsenoside Rh2 (GRh2) has recently been shown to significantly suppress the growth and survival of GBM through inhibiting epidermal growth factor receptor signaling, whereas its effects on the invasion and metastasis have not been examined. Here, we showed that GRh2 dose-dependently decreased GBM cell invasiveness in both scratch wound healing assay and Transwell cell migration assay. Moreover, the inhibitory effects of GRh2 on cell migration seemed to be conducted through decreased expression of matrix metalloproteinase (MMP)-13. Furthermore, using specific inhibitors, we found that GRh2 inhibited MMP13 through PI3k/Akt signaling pathway. Finally, high MMP13 levels were detected in GBM specimen from the patients. Together, these data suggest that GRh2 may suppress GBM migration through inhibiting Akt-mediated MMP13 activation. Thus, our data highlight a previous unappreciated role for GRh2 in suppressing GBM cell metastasis.


Glioblastoma multiforme (GBM) Ginsenoside Rh2 (GRh2) PI3k Akt Matrix metalloproteinase (MMP)-13 



This work was supported by Non-profit foundation of Liaoning Province Technology Department, No.: 2013001009 and Aohongboze Foundation of Liaoning Medical College, No.: XZJJ20130206.

Conflicts of interest



  1. 1.
    Chen J, Huang Q, Wang F. Inhibition of foxo1 nuclear exclusion prevents metastasis of glioblastoma. Tumour Biol. 2014;35:7195–200.CrossRefPubMedGoogle Scholar
  2. 2.
    Gong J, Zhu S, Zhang Y, Wang J. Interplay of VEGFA and MMP2 regulates invasion of glioblastoma. Tumour Biol. 2014;35:11879–85.CrossRefPubMedGoogle Scholar
  3. 3.
    Li S, Gao Y, Ma W, Guo W, Zhou G, Cheng T, et al. EGFR signaling-dependent inhibition of glioblastoma growth by ginsenoside rh2. Tumour Biol. 2014;35:5593–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Wang F, Xiao W, Sun J, Han D, Zhu Y. Mirna-181c inhibits EGFR-signaling-dependent mmp9 activation via suppressing AKT phosphorylation in glioblastoma. Tumour Biol. 2014;35:8653–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Demuth T, Berens ME. Molecular mechanisms of glioma cell migration and invasion. J Neurooncol. 2004;70:217–28.CrossRefPubMedGoogle Scholar
  6. 6.
    Ramaswamy P, Aditi Devi N, Hurmath Fathima K, Dalavaikodihalli Nanjaiah N. Activation of nmda receptor of glutamate influences MMP-2 activity and proliferation of glioma cells. Neurol Sci. 2014;35:823–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Gondi CS, Talluri L, Dinh DH, Gujrati M, Rao JS. RNAi-mediated downregulation of MMP-2 activates the extrinsic apoptotic pathway in human glioma xenograft cells. Int J Oncol. 2009;35:851–9.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Esteve PO, Tremblay P, Houde M, St-Pierre Y, Mandeville R. In vitro expression of MMP-2 and MMP-9 in glioma cells following exposure to inflammatory mediators. Biochim Biophys Acta. 1998;1403:85–96.CrossRefPubMedGoogle Scholar
  9. 9.
    Yeh WL, Lu DY, Lee MJ, Fu WM. Leptin induces migration and invasion of glioma cells through MMP-13 production. Glia. 2009;57:454–64.CrossRefPubMedGoogle Scholar
  10. 10.
    Inoue A, Takahashi H, Harada H, Kohno S, Ohue S, Kobayashi K, et al. Cancer stem-like cells of glioblastoma characteristically express MMP-13 and display highly invasive activity. Int J Oncol. 2010;37:1121–31.PubMedGoogle Scholar
  11. 11.
    Ye H, Wu Q, Zhu Y, Guo C, Zheng X. Ginsenoside rh2 alleviates dextran sulfate sodium-induced colitis via augmenting TGFbeta signaling. Mol Biol Rep. 2014;41:5485–90.CrossRefPubMedGoogle Scholar
  12. 12.
    Kikuchi Y, Sasa H, Kita T, Hirata J, Tode T, Nagata I. Inhibition of human ovarian cancer cell proliferation in vitro by ginsenoside rh2 and adjuvant effects to cisplatin in vivo. Anticancer Drugs. 1991;2:63–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Tode T, Kikuchi Y, Hirata J, Kita T, Imaizumi E. Nagata I: [Inhibitory effects of oral administration of ginsenoside rh2 on tumor growth in nude mice bearing serous cyst adenocarcinoma of the human ovary]. Nihon Sanka Fujinka Gakkai zasshi. 1993;45:1275–82.PubMedGoogle Scholar
  14. 14.
    Tode T, Kikuchi Y, Kita T, Hirata J, Imaizumi E, Nagata I. Inhibitory effects by oral administration of ginsenoside rh2 on the growth of human ovarian cancer cells in nude mice. J Cancer Res Clin Oncol. 1993;120:24–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Nakata H, Kikuchi Y, Tode T, Hirata J, Kita T, Ishii K, et al. Inhibitory effects of ginsenoside rh2 on tumor growth in nude mice bearing human ovarian cancer cells. Jpn J Cancer Res. 1998;89:733–40.CrossRefPubMedGoogle Scholar
  16. 16.
    Tang XP, Tang GD, Fang CY, Liang ZH, Zhang LY. Effects of ginsenoside rh2 on growth and migration of pancreatic cancer cells. World J Gastroenterol. 2013;19:1582–92.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu J, Shimizu K, Yu H, Zhang C, Jin F, Kondo R. Stereospecificity of hydroxyl group at c-20 in antiproliferative action of ginsenoside rh2 on prostate cancer cells. Fitoterapia. 2010;81:902–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Li B, Zhao J, Wang CZ, Searle J, He TC, Yuan CS, et al. Ginsenoside rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Lett. 2011;301:185–92.CrossRefPubMedGoogle Scholar
  19. 19.
    Oh M, Choi YH, Choi S, Chung H, Kim K, Kim SI, et al. Anti-proliferating effects of ginsenoside rh2 on mcf-7 human breast cancer cells. Int J Oncol. 1999;14:869–75.PubMedGoogle Scholar
  20. 20.
    Choi S, Kim TW, Singh SV. Ginsenoside rh2-mediated g1 phase cell cycle arrest in human breast cancer cells is caused by p15 ink4b and p27 kip1-dependent inhibition of cyclin-dependent kinases. Pharm Res. 2009;26:2280–8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2:329–33.CrossRefPubMedGoogle Scholar
  22. 22.
    Xiao X, Gaffar I, Guo P, Wiersch J, Fischbach S, Peirish L, et al. M2 macrophages promote beta-cell proliferation by up-regulation of smad7. Proc Natl Acad Sci U S A. 2014;111:E1211–20.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Xie Q, Yan Y, Huang Z, Zhong X, Huang L. MicroRNA-221 targeting pi3-k/Akt signaling axis induces cell proliferation and bcnu resistance in human glioblastoma. Neuropathology. 2014;34:455–64.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhao N, Guo Y, Zhang M, Lin L, Zheng Z. Akt-mtor signaling is involved in notch-1-mediated glioma cell survival and proliferation. Oncol Rep. 2010;23:1443–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Radeff-Huang J, Seasholtz TM, Chang JW, Smith JM, Walsh CT, Brown JH. Tumor necrosis factor-alpha-stimulated cell proliferation is mediated through sphingosine kinase-dependent akt activation and cyclin d expression. J Biol Chem. 2007;282:863–70.CrossRefPubMedGoogle Scholar
  26. 26.
    Aeder SE, Martin PM, Soh JW, Hussaini IM. Pkc-eta mediates glioblastoma cell proliferation through the akt and mtor signaling pathways. Oncogene. 2004;23:9062–9.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Ning Guan
    • 1
  • Xiaochuan Huo
    • 1
  • Zhenxing Zhang
    • 1
  • Shoudan Zhang
    • 1
  • Junsheng Luo
    • 1
  • Wenshi Guo
    • 1
  1. 1.Department of NeurosurgeryThe First Affiliated Hospital of Liaoning Medical UniversityJinzhouChina

Personalised recommendations