Tumor Biology

, Volume 36, Issue 5, pp 3147–3157 | Cite as

Killing of cancer cells through the use of eukaryotic expression vectors harbouring genes encoding nucleases and ribonuclease inhibitor

  • Elena M. Glinka


Cancer gene therapy vectors are promising tools for killing cancer cells with the purpose of eradicating malignant tumours entirely. Different delivery methods of vectors into the cancer cells, including both non-viral and viral, as well as promoters for the targeted expression of genes encoding anticancer proteins were developed for effective and selective killing of cancer cells without harming healthy cells. Many vectors have been created to kill cancer cells, and some vectors suppress malignant tumours with high efficiency. This review is focused on vectors bearing genes for nucleases such as deoxyribonucleases (caspase-activated DNase, deoxyribonuclease I-like 3, endonuclease G) and ribonucleases (human polynucleotide phosphorylase, ribonuclease L, α-sarcin, barnase), as well as vectors harbouring gene encoding ribonuclease inhibitor. The data concerning the functionality and the efficacy of such vectors are presented.


Toxic protein Promoter Expression Ribonuclease Deoxyribonuclease Delivery 


Conflicts of interest



  1. 1.
    Watanabe M, Sakaguchi M, Kinoshita R, Kaku H, Ariyoshi Y, Ueki H, et al. A novel gene expression system strongly enhances the anticancer effects of a REIC/Dkk-3-encoding adenoviral vector. Oncol Rep. 2014;31:1089–95.PubMedGoogle Scholar
  2. 2.
    Glinka EM. Eukaryotic expression vectors containing genes encoding plant proteins for killing of cancer cells. Cancer Epidemiol. 2013;37:1014–9.PubMedGoogle Scholar
  3. 3.
    Qu L, Wang Y, Gong L, Zhu J, Gong R, Si J. Suicide gene therapy for hepatocellular carcinoma cells by survivin promoter-driven expression of the herpes simplex virus thymidine kinase gene. Oncol Rep 2013; 291435–291440.Google Scholar
  4. 4.
    Glinka EM. Eukaryotic expression vectors bearing genes encoding cytotoxic proteins for cancer gene therapy. Plasmid. 2012;68:69–85.PubMedGoogle Scholar
  5. 5.
    Amit D, Tamir S, Birman T, Gofrit ON, Hochberg A. Development of targeted therapy for bladder cancer mediated by a double promoter plasmid expressing diphtheria toxin under the control of IGF2-P3 and IGF2-P4 regulatory sequences. Int J Clin Exp Med. 2011;4:91–102.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Lo HW, Day CP, Hung MC. Cancer-specific gene therapy. Adv Genet. 2005;54:235–55.PubMedGoogle Scholar
  7. 7.
    Robson T, Hirst DG. Transcriptional targeting in cancer gene therapy. J Biomed Biotechnol. 2003;2003:110–37.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2012 - an update. J Gene Med. 2013;15:65–77.PubMedGoogle Scholar
  9. 9.
    Malecki M. Frontiers in Suicide Gene Therapy of Cancer. J Genet Syndr Gene Ther. 2012;2012:e114–132.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Maxwell IF, Maxwell F, Glode LM. Regulated expression of a diphtheria toxin A-chain gene transfected into human cells: possible strategy for inducing cancer cell suicide. Cancer Res. 1986;46:4660–4.PubMedGoogle Scholar
  11. 11.
    Hanna N, Ohana P, Konikoff FM, Leichtmann G, Hubert A, Appelbaum L, et al. Phase 1/2a, dose-escalation, safety, pharmacokinetic and preliminary efficacy study of intratumoral administration of BC-819 in patients with unresectable pancreatic cancer. Cancer Gene Ther. 2012;19:374–81.PubMedGoogle Scholar
  12. 12.
    Mizrahi A, Czerniak A, Ohana P, Amiur S, Gallula J, Matouk I, et al. Treatment of ovarian cancer ascites by intra-peritoneal injection of diphtheria toxin A chain-H19 vector: a case report. J Med Case Rep. 2010;4:228–33.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Crystal RG. Transfer of genes to humans: Early lessons and obstacles to success. Science. 1995;270:404–10.PubMedGoogle Scholar
  14. 14.
    Sharma AR, Kundu SK, Nam JS, Sharma G, Priya Doss CG, Lee SS, et al. Next generation delivery system for proteins and genes of therapeutic purpose: why and how? Biomed Res Int. 2014;2014:1–11.Google Scholar
  15. 15.
    Mizrahi A, Hochberg A, Amiur S, Gallula J, Matouk I, Birman T, et al. Targeting diphtheria toxin and TNF alpha expression in ovarian tumors using the H19 regulatory sequences. Int J Clin Exp Med. 2010;3:270–82.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Koster F, Finas D, Schulz C, Hauser C, Diedrich K, Felberbaum R. Additive effect of steroids and cholesterol on the liposomal transfection of the breast cancer cell line T-47D. Int J Mol Med. 2004;14:769–72.PubMedGoogle Scholar
  17. 17.
    Doloff JC, Jounaidi Y, Waxman DJ. Dual E1A oncolytic adenovirus: targeting tumor heterogeneity with two independent cancer-specific promoter elements, DF3/MUC1 and hTERT. Cancer Gene Ther. 2011;18:153–66.PubMedGoogle Scholar
  18. 18.
    Foka P, Pourchet A, Hernandez-Alcoceba R, Doumba PP, Pissas G, Kouvatsis V, et al. Novel tumour-specific promoters for transcriptional targeting of hepatocellular carcinoma by herpes simplex virus vectors. J Gene Med. 2010;12:956–67.PubMedGoogle Scholar
  19. 19.
    Dong Z, Nör JE. Transcriptional targeting of tumor endothelial cells for gene therapy. Adv Drug Deliv Rev. 2009;2009(61):542–53.Google Scholar
  20. 20.
    Dorer DE, Nettelbeck DM. Targeting cancer by transcriptional control in cancer gene therapy and viral oncolysis. Adv Drug Deliv Rev. 2009;61:554–71.PubMedGoogle Scholar
  21. 21.
    Hughes RM. Strategies for cancer gene therapy. J Surg Oncol. 2004;85:28–35.PubMedGoogle Scholar
  22. 22.
    Beltinger C, Uckert W, Debatin K-M. Suicide gene therapy for pediatric tumors. J Mol Med. 2001;78:598–612.PubMedGoogle Scholar
  23. 23.
    Lu Y. Transcriptionally regulated, prostate-targeted gene therapy for prostate cancer. Adv Drug Deliv Rev. 2009;61:572–88.PubMedGoogle Scholar
  24. 24.
    Glinka EM, Andryushchenko AS, Sapozhnikov AM, Zatsepina OV. Construction of the plasmid for expression of ETA–EGFP fusion protein under control of the cytomegalovirus promoter and its effects in HeLa cells. Plasmid. 2009;62:119–27.PubMedGoogle Scholar
  25. 25.
    Choe S, Bennett MJ, Fugii G, Curmi PM, Kantardjieff KA, Collier RJ, et al. The crystal structure of diphtheria toxin. Nature. 1992;357:216–22.PubMedGoogle Scholar
  26. 26.
    Iglewski BH, Liu PV, Kabat D. Mechanism of action of Pseudomonas aeruginosa exotoxin A: adenosine diphosphate ribosylation of mammalian elongation factor 2 in vitro and in vivo. Infect Immun. 1977;15:138–44.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Pappenheimer Jr AM. Diphtheria toxin. Annu Rev Biochem. 1977;46:69–94.PubMedGoogle Scholar
  28. 28.
    Endo Y, Tsurugi K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem. 1987;262:8128–30.PubMedGoogle Scholar
  29. 29.
    Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998;391:43–50.PubMedGoogle Scholar
  30. 30.
    Lee FS, Fox EA, Zhou HM, Strydom DJ, Vallee BL. Primary structure of human placental ribonuclease inhibitor. Biochemistry. 1988;27:8545–53.PubMedGoogle Scholar
  31. 31.
    Liu D, Cardillo TM, Wang Y, Rossi EA, Goldenberg DM, Chang CH. Trop-2-targeting tetrakis-ranpirnase has potent antitumor activity against triple-negative breast cancer. Mol Cancer. 2014;13:53–64.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Mathew M, Zaineb KC, Verma RS. GM-CSF-DFF40: a novel humanized immunotoxin induces apoptosis in acute myeloid leukemia cells. Apoptosis. 2013;18:882–95.PubMedGoogle Scholar
  33. 33.
    Carreras-Sangrà N, Tomé-Amat J, García-Ortega L, Batt CA, Oñaderra M, Martínez-del-Pozo A, et al. Production and characterization of a colon cancer-specific immunotoxin based on the fungal ribotoxinα-sarcin. Protein Eng Des Sel. 2012;25:425–35.PubMedGoogle Scholar
  34. 34.
    Newton DL, Stockwin LH, Rybak SM. Anti-CD22 Onconase: preparation and characterization. Methods Mol Biol. 2009;525:425–43.PubMedGoogle Scholar
  35. 35.
    Rybak SM, Arndt MA, Schirrmann T, Dübel S, Krauss J. Ribonucleases and immunoRNases as anticancer drugs. Curr Pharm Des. 2009;15:2665–75.PubMedGoogle Scholar
  36. 36.
    Schirrmann T, Krauss J, Arndt MA, Rybak SM, Dübel S. Targeted therapeutic RNases (ImmunoRNases). Expert Opin Biol Ther. 2009;9:79–95.PubMedGoogle Scholar
  37. 37.
    De Lorenzo C, D'Alessio G. From immunotoxins to immunoRNases. Curr Pharm Biotechnol. 2008;9:210–4.PubMedGoogle Scholar
  38. 38.
    Krauss J, Arndt MA, Dübel S, Rybak SM. Antibody-targeted RNase fusion proteins (immunoRNases) for cancer therapy. Curr Pharm Biotechnol. 2008;9:231–4.PubMedGoogle Scholar
  39. 39.
    Rybak SM. Antibody-onconase conjugates: cytotoxicity and intracellular routing. Curr Pharm Biotechnol. 2008;9:226–30.PubMedGoogle Scholar
  40. 40.
    Glinka EM, Edelweiss EF, Sapozhnikov AM, Deyev SM. A new vector for controllable expression of an anti-HER2/neu mini-antibody-barnase fusion protein in HEK 293 T cells. Gene. 2006;366:97–103.PubMedGoogle Scholar
  41. 41.
    Newton DL, Rybak SM. Preparation of recombinant RNase single-chain antibody fusion proteins. Mol Biotechnol. 2002;20:63–76.PubMedGoogle Scholar
  42. 42.
    Linardou H, Epenetos AA, Deonarain MP. A recombinant cytotoxic chimera based on mammalian deoxyribonuclease-I. Int J Cancer. 2000;86:561–9.PubMedGoogle Scholar
  43. 43.
    Linardou H, Deonarain MP, Spooner RA, Epenetos AA. Deoxyribonuclease I (DNAse I). A novel approach for targeted cancer therapy. Cell Biophys. 1994;24–25:243–8.PubMedGoogle Scholar
  44. 44.
    Aleksandrushkina NI, Vanyushin BF. Endonucleases and apoptosis in animals. Biochemistry (Mosc). 2012;77:1436–51.Google Scholar
  45. 45.
    Yang W. Nucleases: diversity of structure, function and mechanism. Q Rev Biophys. 2011;44:1–93.PubMedGoogle Scholar
  46. 46.
    Counis MF, Torriglia A. Acid DNases and their interest among apoptotic endonucleases. Biochimie. 2006;88:1851–8.PubMedGoogle Scholar
  47. 47.
    Evans CJ, Aguilera RJ. DNase II: genes, enzymes and function. Gene. 2003;322:1–15.PubMedGoogle Scholar
  48. 48.
    Nagata S. Apoptotic DNA fragmentation. Exp Cell Res. 2000;256:12–8.PubMedGoogle Scholar
  49. 49.
    Kawane K, Nagata S. Nucleases in programmed cell death. Methods Enzymol. 2008;442:271–87.PubMedGoogle Scholar
  50. 50.
    Nagata S, Nagase H, Kawane K, Mukae N, Fukuyama H. Degradation of chromosomal DNA during apoptosis. Cell Death Differ. 2003;10:108–16.PubMedGoogle Scholar
  51. 51.
    Hengartner MO. Apoptosis. DNA destroyers. Nature. 2001;412:27–9.PubMedGoogle Scholar
  52. 52.
    Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281:1312–6.PubMedGoogle Scholar
  53. 53.
    Peitsch MC, Polzar B, Stephan H, Crompton T, MacDonald HR, Mannherz HG, et al. Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). Embo J. 1993;12:371–7.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Arends MJ, Morris RG, Wyllie AH. Apoptosis. The role of the endonuclease. Am J Pathol. 1990;136:593–608.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Polzar B, Peitsch MC, Loos R, Tschopp J, Mannherz HG. Overexpression of deoxyribonuclease I (DNase I) transfected into COS-cells: its distribution during apoptotic cell death. Eur J Cell Biol. 1993;62:397–405.PubMedGoogle Scholar
  56. 56.
    Jänicke RU, Sprengart ML, Wati MR, Porter AG. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem. 1998;273:9357–60.PubMedGoogle Scholar
  57. 57.
    Widłak P. The DFF40/CAD endonuclease and its role in apoptosis. Acta Biochim Pol. 2000;47:1037–44.PubMedGoogle Scholar
  58. 58.
    Liu X, Li P, Widlak P, Zou H, Luo X, Garrard WT, et al. The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci U S A. 1998;95:8461–6.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Vařecha M, Potěšilová M, Matula P, Kozubek M. Endonuclease G interacts with histone H2B and DNA topoisomerase II alpha during apoptosis. Mol Cell Biochem. 2012;363:301–7.PubMedGoogle Scholar
  60. 60.
    Lechardeur D, Dougaparsad S, Nemes C, Lukacs GL. Oligomerization state of the DNA fragmentation factor in normal and apoptotic cells. J Biol Chem. 2005;280:40216–25.PubMedGoogle Scholar
  61. 61.
    West JD, Ji C, Marnett LJ. Modulation of DNA fragmentation factor 40 nuclease activity by poly(ADP-ribose) polymerase-1. J Biol Chem. 2005;280:15141–7.PubMedGoogle Scholar
  62. 62.
    Boulares AH, Zoltoski AJ, Contreras FJ, Yakovlev AG, Yoshihara K, Smulson ME. Regulation of DNAS1L3 endonuclease activity by poly(ADP-ribosyl)ation during etoposide-induced apoptosis. Role of poly(ADP-ribose) polymerase-1 cleavage in endonuclease activation. J Biol Chem. 2002;277:372–8.PubMedGoogle Scholar
  63. 63.
    Yakovlev AG, Wang G, Stoica BA, Boulares HA, Spoonde AY, Yoshihara K, et al. A role of the Ca2+/Mg2 + dependent endonuclease in apoptosis and its inhibition by Poly(ADP-ribose) polymerase. J Biol Chem. 2000;275:21302–8.PubMedGoogle Scholar
  64. 64.
    Yakovlev AG, Wang G, Stoica BA, Simbulan-Rosenthal CM, Yoshihara K, Smulson ME. Role of DNAS1L3 in Ca2 + - and Mg2 + -dependent cleavage of DNA into oligonucleosomal and high molecular mass fragments. Nucleic Acids Res. 1999;27:1999–2005.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Halenbeck R, MacDonald H, Roulston A, Chen TT, Conroy L, Williams LT. CPAN, a human nuclease regulated by the caspase-sensitive inhibitor DFF45. Curr Biol. 1998;8:537–40.PubMedGoogle Scholar
  66. 66.
    Mukae N, Enari M, Sakahira H, Fukuda Y, Inazawa J, Toh H, et al. Molecular cloning and characterization of human caspase-activated DNase. Proc Natl Acad Sci U S A. 1998;95:9123–8.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell. 1997;89:175–84.PubMedGoogle Scholar
  68. 68.
    Sakahira H, Enari M, Ohsawa Y, Uchiyama Y, Nagata S. Apoptotic nuclear morphological change without DNA fragmentation. Curr Biol. 1999;9:543–6.PubMedGoogle Scholar
  69. 69.
    Sabol SL, Li R, Lee TY, Abdul-Khalek R. Inhibition of apoptosis-associated DNA fragmentation activity in nonapoptotic cells: the role of DNA fragmentation factor-45 (DFF45/ICAD). Biochem Biophys Res Commun. 1998;253:151–8.PubMedGoogle Scholar
  70. 70.
    Bischin C, Lupan A, Taciuc V, Silaghi-Dumitrescu R. Interactions between proteins and platinum-containing anti-cancer drugs. Mini Rev Med Chem. 2011;11:214–24.PubMedGoogle Scholar
  71. 71.
    Asselin E, Mills GB, Tsang BK. XIAP regulates Akt activity and caspase-3-dependent cleavage during cisplatin-induced apoptosis in human ovarian epithelial cancer cells. CancerRes. 2001;61:1862–8.Google Scholar
  72. 72.
    Kimura Y, Sugimoto C, Matsukawa S, Sunaga H, Igawa H, Yamamoto H, et al. Combined treatment of cisplatin and overexpression of caspase-activated deoxyribonuclease (CAD) promotes apoptosis in vitro and in vivo. Oral Oncol. 2004;40:390–9.PubMedGoogle Scholar
  73. 73.
    Elliott G, O’Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell. 1997;88:223–33.PubMedGoogle Scholar
  74. 74.
    Boulares AH, Zoltoski AJ, Sherif ZA, Yakovlev AG, Smulson ME. The Poly(ADP-ribose) polymerase-1-regulated endonuclease DNAS1L3 is required for etoposide-induced internucleosomal DNA fragmentation and increases etoposide cytotoxicity in transfected osteosarcoma cells. Cancer Res. 2002;62:4439–44.PubMedGoogle Scholar
  75. 75.
    Rodriguez AM, Rodin D, Nomura H, Morton CC, Weremowicz S, Schneider MC. Identification, localization, and expression of two novel human genes similar to deoxyribonuclease I. Genomics. 1997;42:507–13.PubMedGoogle Scholar
  76. 76.
    Boulares H, Zoltoski A, Kandan S, Akbulut T, Yakovlev A, Oumouna M. Correlation between decreased sensitivity of the Daudi lymphoma cells to VP-16-induced apoptosis and deficiency in DNAS1L3 expression. Biochem Biophys Res Commun. 2006;341:653–62.PubMedGoogle Scholar
  77. 77.
    Gantchev TG, Hunting DJ. The ortho-quinone metabolite of the anticancer drug etoposide (VP-16) is a potent inhibitor of the topoisomerase II/DNA cleavable complex. Mol Pharmacol. 1998;53:422–8.PubMedGoogle Scholar
  78. 78.
    Malecki M, Dahlke J, Haig M, Wohlwend L, Malecki R. Eradication of Human Ovarian Cancer Cells by Transgenic Expression of Recombinant DNASE1, DNASE1L3, DNASE2, and DFFB Controlled by EGFR Promoter: Novel Strategy for Targeted Therapy of Cancer. J Genet Syndr Gene Ther. 2013;4:152–72.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Varecha M, Amrichová J, Zimmermann M, Ulman V, Lukásová E, Kozubek M. Bioinformatic and image analyses of the cellular localization of the apoptotic proteins endonuclease G, AIF, and AMID during apoptosis in human cells. Apoptosis. 2007;12:1155–71.PubMedGoogle Scholar
  80. 80.
    Huang KJ, Ku CC, Lehman IR. Endonuclease G: a role for the enzyme in recombination and cellular proliferation. Proc Natl Acad Sci U S A. 2006;103:8995–9000.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature. 2001;412:95–9.PubMedGoogle Scholar
  82. 82.
    Widlak P, Li LY, Wang X, Garrard WT. Action of recombinant human apoptotic endonuclease G on naked DNA and chromatin substrates: cooperation with exonuclease and DNase I. J Biol Chem. 2001;276:48404–9.PubMedGoogle Scholar
  83. 83.
    Côté J, Ruiz-Carrillo A. Primers for mitochondrial DNA replication generated by endonuclease G. Science. 1993;261:765–9.PubMedGoogle Scholar
  84. 84.
    Yin X, Apostolov EO, Shah SV, Wang X, Bogdanov KV, Buzder T, et al. Induction of renal endonuclease G by cisplatin is reduced in DNase I-deficient mice. J Am Soc Nephrol. 2007;18:2544–53.PubMedGoogle Scholar
  85. 85.
    Basnakian AG, Apostolov EO, Yin X, Abiri SO, Stewart AG, Singh AB, et al. Endonuclease G promotes cell death of non-invasive human breast cancer cells. Exp Cell Res. 2006;312:4139–49.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Wang X, Tryndyak V, Apostolov EO, Yin X, Shah SV, Pogribny IP, et al. Sensitivity of human prostate cancer cells to chemotherapeutic drugs depends on EndoG expression regulated by promoter methylation. Cancer Lett. 2008;270:132–43.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Wang X, Mikhailova MV, Basnakian AG. Cytotoxic Endonucleases: New Targets for Prostate Cancer Chemotherapy. In Prostate Cancer - From Bench to Bedside, Dr. Philippe E. Spiess (Ed.), InTech, ISBN: 978-953-307-331-6, 2011. doi:  10.5772/25585.
  88. 88.
    Fang EF, Ng TB. Ribonucleases of different origins with a wide spectrum of medicinal applications. Biochim Biophys Acta. 2011;1815:65–74.PubMedGoogle Scholar
  89. 89.
    Zhabokritsky A, Kutky M, Burns LA, Karran RA, Hudak KA. RNA toxins: mediators of stress adaptation and pathogen defense. Wiley Interdiscip Rev RNA. 2011;2:890–903.PubMedGoogle Scholar
  90. 90.
    Sorrentino S. The eight human "canonical" ribonucleases: molecular diversity, catalytic properties, and special biological actions of the enzyme proteins. FEBS Lett. 2010;584:2194–200.PubMedGoogle Scholar
  91. 91.
    Lacadena J, Alvarez-García E, Carreras-Sangrà N, Herrero-Galán E, Alegre-Cebollada J, García-Ortega L, et al. Fungal ribotoxins: molecular dissection of a family of natural killers. FEMS Microbiol Rev. 2007;31:212–37.PubMedGoogle Scholar
  92. 92.
    Castro J, Ribó M, Navarro S, Nogués MV, Vilanova M, Benito A. A human ribonuclease induces apoptosis associated with p21WAF1/CIP1 induction and JNK inactivation. BMC Cancer. 2011;11:9–20.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Altomare DA, Rybak SM, Pei J, Maizel JV, Cheung M, Testa JR, et al. Onconase responsive genes in human mesothelioma cells: implications for an RNA damaging therapeutic agent. BMC Cancer. 2010;10:34–45.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Silverman RH. Implications for RNase L in prostate cancer biology. Biochemistry. 2003;42:1805–12.PubMedGoogle Scholar
  95. 95.
    Wang M, Alberti K, Sun S, Arellano CL, Xu Q. Combinatorially designed lipid-like nanoparticles for intracellular delivery of cytotoxic protein for cancer therapy. Angew Chem Int Ed Engl. 2014;53:2893–8.PubMedGoogle Scholar
  96. 96.
    Riccio G, D'Avino C, Raines RT, De Lorenzo C. A novel fully human antitumor immunoRNase resistant to the RNase inhibitor. Protein Eng Des Sel. 2013;26:243–8.PubMedGoogle Scholar
  97. 97.
    Tomé-Amat J, Menéndez-Méndez A, García-Ortega L, Batt CA, Oñaderra M, Martínez-del-Pozo A, et al. Production and characterization of scFvA33T1, an immunoRNase targeting colon cancer cells. FEBS J. 2012;279:3022–32.PubMedGoogle Scholar
  98. 98.
    Ardelt W, Ardelt B, Darzynkiewicz Z. Ribonucleases as potential modalities in anticancer therapy. Eur J Pharmacol. 2009;625:181–9.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Beck AK, Pass HI, Carbone M, Yang H. Ranpirnase as a potential antitumor ribonuclease treatment for mesothelioma and other malignancies. Future Oncol. 2008;4:341–9.PubMedGoogle Scholar
  100. 100.
    Makarov AA, Kolchinsky A, Ilinskaya ON. Binase and other microbial RNasesas potential anticancer agents. Bioessays. 2008;30:781–90.PubMedGoogle Scholar
  101. 101.
    Arnold U, Ulbrich-Hofmann R. Natural and engineered ribonucleases as potential cancer therapeutics. Biotechnol Lett. 2006;28:1615–22.PubMedGoogle Scholar
  102. 102.
    Leszczyniecka M, Kang DC, Sarkar D, Su ZZ, Holmes M, Valerie K, et al. Identification and cloning of human polynucleotide phosphorylase, hPNPaseold-35, in the context of terminal differentiation and cellular senescence. Proc Natl Acad Sci U S A. 2002;99:16636–41.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development. 2005;132:885–96.PubMedGoogle Scholar
  104. 104.
    Sarkar D, Leszczyniecka M, Kang DC, Lebedeva IV, Valerie K, Dhar S, et al. Down-regulation of Myc as a potential target for growth arrest induced by human polynucleotide phosphorylase (hPNPaseold-35) in human melanoma cells. J Biol Chem. 2003;2(78):24542–51.Google Scholar
  105. 105.
    Das SK, Sokhi UK, Bhutia SK, Azab B, Su ZZ, Sarkar D, et al. Human polynucleotide phosphorylase selectively and preferentially degrades microRNA-221 in human melanoma cells. Proc Natl Acad Sci U S A. 2010;107:11948–53.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Chan I, Lebedeva IV, Su ZZ, Sarkar D, Valerie K, Fisher PB. Progression elevated gene-3 promoter (PEG-Prom) confers cancer cell selectivity to human polynucleotide phosphorylase (hPNPaseold-35)-mediated growth suppression. J Cell Physiol. 2008;215:401–9.PubMedGoogle Scholar
  107. 107.
    Su ZZ, Sarkar D, Emdad L, Duigou GJ, Young CS, Ware J, et al. Targeting gene expression selectively in cancer cells by using the progression-elevated gene-3 promoter. Proc Natl Acad Sci U S A. 2005;102:1059–64.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Van Maerken T, Sarkar D, Speleman F, Dent P, Weiss WA, Fisher PB. Adenovirus-mediated hPNPase(old-35) gene transfer as a therapeutic strategy for neuroblastoma. J Cell Physiol. 2009;219:707–15.PubMedGoogle Scholar
  109. 109.
    Liang SL, Quirk D, Zhou A. RNase L: its biological roles and regulation. IUBMB Life. 2006;58:508–14.PubMedGoogle Scholar
  110. 110.
    Hovanessian AG, Brown RE, Kerr IM. Synthesis of low molecular weight inhibitor of protein synthesis with enzyme from interferon-treated cells. Nature. 1977;268:537–9.PubMedGoogle Scholar
  111. 111.
    Liu W, Liang SL, Liu H, Silverman R, Zhou A. Tumour suppressor function of RNase L in a mouse model. Eur J Cancer. 2007;43:202–9.PubMedGoogle Scholar
  112. 112.
    Lacadena J, Martínez del Pozo A, Lacadena V, Martínez-Ruiz A, Mancheño JM, Oñaderra M, et al. The cytotoxin alpha-sarcin behaves as a cyclizing ribonuclease. FEBS Lett. 1998;424:46–8.PubMedGoogle Scholar
  113. 113.
    Wool IG, Glück A, Endo Y. Ribotoxin recognition of ribosomal RNA and a proposal for the mechanism of translocation. Trends Biochem Sci. 1992;17:266–9.PubMedGoogle Scholar
  114. 114.
    Voorhees RM, Schmeing TM, Kelley AC, Ramakrishnan V. The mechanism for activation of GTP hydrolysison the ribosome. Science. 2010;330:835–8.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Narayanan S, Surendranath K, Bora N, Surolia A, Karande AA. Ribosome inactivating proteins and apoptosis. FEBS Lett. 2005;579:1324–31.PubMedGoogle Scholar
  116. 116.
    Olson BH, Jennings JC, Roga V, Junek AJ, Schurmans DM. a-Sarcin, a new antitumor agent. II. Fermentation and antitumor spectrum. Appl Microbiol. 1965;13:322–6.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Olmo N, Turnay J, Gonzalez de Buitrago G, Lopez de Silanes I, Gavilanes JG, Lizarbe MA. Cytotoxic mechanism of the ribotoxin alpha-sarcin. Induction of cell death via apoptosis. Eur J Biochem. 2001;268:2113–23.PubMedGoogle Scholar
  118. 118.
    Alford SC, Pearson JD, Carette A, Ingham RJ, Howard PL. Alpha-sarcin catalytic activity is not required for cytotoxicity. BMC Biochem. 2009;10:9–20.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Hartley RW. Barnase and Barstar: Two small proteins to fold and fit together. Trends Biochem Sci. 1989;14:450–4.PubMedGoogle Scholar
  120. 120.
    Hartley RW. Barnase and barstar. Expression of its cloned inhibitor permits expression of a cloned ribonuclease. J Mol Biol. 1988;202:913–5.PubMedGoogle Scholar
  121. 121.
    Leuchtenberger S, Perz A, Gatz C, Bartsch JW. Conditional cell ablation by stringent tetracycline-dependent regulation of barnase in mammalian cells. Nucleic Acids Res. 2001;29:E76–82.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Agarwal S, Nikolai B, Yamaguchi T, Lech P, Somia NV. Construction and use of retroviral vectors encoding the toxic gene barnase. Mol Ther. 2006;14:555–63.PubMedGoogle Scholar
  123. 123.
    Dickson KA, Haigis MC, Raines RT. Ribonuclease inhibitor: structure and function. Prog Nucleic Acid Res Mol Biol. 2005;80:349–74.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Kurachi K, Davie EW, Vallee BL. Sequence of the cDNAand gene for angiogenin, a human angiogenesis factor. Biochemistry. 1985;24:5494–9.PubMedGoogle Scholar
  125. 125.
    Polakowski IJ, Lewis MK, Muthukkaruppan VR, Erdman B, Kubai L, Auerbach R. A ribonuclease inhibitor expresses antiangiogenic properties and leads to reduced tumor growth in mice. Am J Pathol. 1993;143:507–17.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Shapiro R, Vallee BL. Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin. Proc Natl Acad Sci U S A. 1987;84:2238–41.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Fett JW, Strydom DJ, Vallee BL. Isolation and characterization of angiogenin, anangiogenic protein from human carcinoma cells. Biochemistry. 1985;124:5480–6.Google Scholar
  128. 128.
    Rybak SM, Sanovich E, Hollingshead MG, Borgel SD, Newton DL, Melillo G, et al. “Vasocrine” formation of tumor cell- lined vascular spaces: implications for rational design of antiangiogenic therapies. Cancer Res. 2003;63:2812–9.PubMedGoogle Scholar
  129. 129.
    Chen JX, Gao Y, Liu JW, Tian YX, Zhao J, Cui XY. Antitumor effects of human ribonuclease inhibitor gene transfectedon B16 melanoma cells. Int J Biochem Cell Biol. 2005;37:1219–31.PubMedGoogle Scholar
  130. 130.
    Liu CC, Shen Z, Kung HF, Lin MC. Cancer gene therapy targeting angiogenesis: an updated review. World J Gastroenterol. 2006;12:6941–8.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Xiuping Y, Yuxiang T, Xiuyun C. Cloning and sequencing of ribonuclease inhibitor. J Pract Oncol. 2000;15:230–2.Google Scholar
  132. 132.
    Fu P, Chen J, Tian Y, Watkins T, Cui X, Zhao B. Anti-tumor effect of hematopoietic cells carrying the gene of ribonuclease inhibitor. Cancer Gene Ther. 2005;12:268–75.PubMedGoogle Scholar
  133. 133.
    Wang T, Yang M, Chen J, Watkins T, Xiuyun C. Inhibition of B16 melanoma growth in vivo by retroviral vector-mediated human ribonuclease inhibitor. Angiogenesis. 2005;8:73–81.PubMedGoogle Scholar
  134. 134.
    Botella-Estrada R, Malet G, Revert F, Dasí F, Crespo A, Sanmartín O, et al. Antitumor effect of B16 melanoma cells genetically modified with the angiogenesis inhibitor rnasin. Cancer Gene Ther. 2001;8:278–84.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.MoscowRussia

Personalised recommendations