Skip to main content

Advertisement

Log in

Transcription factor decoy: a pre-transcriptional approach for gene downregulation purpose in cancer

  • Review
  • Published:
Tumor Biology

Abstract

Gene therapy as a therapeutic approach has been the dream for many scientists around the globe. Many strategies have been proposed and applied for this purpose, yet the void for a functional safe method is still apparent. Since most of the diseases are caused by undesirable upregulation (oncogenes) or downregulation (tumor suppressor genes) of genes, major gene therapy’s techniques affect gene expression. Most of the methods are used in post-transcriptional level such as RNA inhibitory (RNAi) and splice-switching oligonucleotides (SSOs). RNAi blocks messenger RNA (mRNA) translation by mRNA degradation or interruption between attachments of mRNA with ribosomes’ subunits. However, one of the novel methods is the usage of transcription factor targeted decoys. DNA decoys are the new generation of functional gene downregulatory oligonucleotides which compete with specific binding sites of transcription factors. Considering the exponential growth of this technique in both in vitro and in vivo studies, in this paper, we aim to line out the description, design, and application of decoys in research and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li LC, Okino ST, Zhao H, Pookot D, Place RF, Urakami S, et al. Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A. 2006;103:17337–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Janowski BA, Younger ST, Hardy DB, Ram R, Huffman KE, Corey DR. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol. 2007;3:166–73.

    Article  CAS  PubMed  Google Scholar 

  3. Schwartz JC, Younger ST, Nguyen NB, Hardy DB, Monia BP, Corey DR, et al. Antisense transcripts are targets for activating small RNAs. Nat Struct Mol Biol. 2008;15:842–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zheng L, Wang L, Gan J, Zhang H. Rna activation: promise as a new weapon against cancer. Cancer Lett. 2014;355:18–24.

    Article  CAS  PubMed  Google Scholar 

  5. Junxia W, Ping G, Yuan H, Lijun Z, Jihong R, Fang L, et al. Double strand RNA-guided endogeneous e-cadherin up-regulation induces the apoptosis and inhibits proliferation of breast carcinoma cells in vitro and in vivo. Cancer Sci. 2010;101:1790–6.

    Article  PubMed  Google Scholar 

  6. Mao Q, Li Y, Zheng X, Yang K, Shen H, Qin J, et al. Up-regulation of e-cadherin by small activating rna inhibits cell invasion and migration in 5637 human bladder cancer cells. Biochem Biophys Res Commun. 2008;375:566–70.

    Article  CAS  PubMed  Google Scholar 

  7. Chen Z, Place RF, Jia ZJ, Pookot D, Dahiya R, Li LC. Antitumor effect of dsRNA-induced p21(waf1/cip1) gene activation in human bladder cancer cells. Mol Cancer Ther. 2008;7:698–703.

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Place RF, Huang V, Wang X, Noonan EJ, Magyar CE, et al. Prognostic value and function of KLF4 in prostate cancer: RNAa and vector-mediated overexpression identify KLF4 as an inhibitor of tumor cell growth and migration. Cancer Res. 2010;70:10182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Portnoy V, Huang V, Place RF, Li LC. Small rna and transcriptional upregulation. Wiley Interdiscip Rev RNA. 2011;2:748–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rossi JJ. Transcriptional activation by small RNA duplexes. Nat Chem Biol. 2007;3:136–7.

    Article  CAS  PubMed  Google Scholar 

  11. Zamecnik PC, Stephenson ML. Inhibition of rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A. 1978;75:280–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kole R, Krainer AR, Altman S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov. 2012;11:125–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chi KN, Hotte SJ, Yu EY, Tu D, Eigl BJ, Tannock I, et al. Randomized phase ii study of docetaxel and prednisone with or without OGX-011 in patients with metastatic castration-resistant prostate cancer. J Clin Oncol. 2010;28:4247–54.

    Article  CAS  PubMed  Google Scholar 

  14. Raal FJ, Santos RD, Blom DJ, Marais AD, Charng MJ, Cromwell WC, et al. Mipomersen, an apolipoprotein b synthesis inhibitor, for lowering of ldl cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375:998–1006.

    Article  CAS  PubMed  Google Scholar 

  15. Calin GA, Croce CM. Microrna signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  PubMed  Google Scholar 

  16. Rad SMAH, Bavarsad MS, Arefian E, Jaseb K, Shahjahani M, Saki N. The role of micrornas in stemness of cancer stem cells. Oncol Rev. 2013;7:e8.

    Article  Google Scholar 

  17. Mobarra N, Shafiee A, Rad SM, Tasharrofi N, Soufi-Zomorod M, Hafizi M, Movahed M, Kouhkan F, Soleimani M. Overexpression of microrna-16 declines cellular growth, proliferation and induces apoptosis in human breast cancer cells. In Vitro Cell Dev Biol Anim. 2015. doi:10.1007/s11626-015-9872-4.

  18. Disterer P, Kryczka A, Liu Y, Badi YE, Wong JJ, Owen JS, et al. Development of therapeutic splice-switching oligonucleotides. Hum Gene Ther. 2014;25:587–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bauman J, Jearawiriyapaisarn N, Kole R. Therapeutic potential of splice-switching oligonucleotides. Oligonucleotides. 2009;19:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goemans NM, Tulinius M, van den Akker JT, Burm BE, Ekhart PF, Heuvelmans N, et al. Systemic administration of PRO051 in Duchenne's muscular dystrophy. N Engl J Med. 2011;364:1513–22.

    Article  CAS  PubMed  Google Scholar 

  21. Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C, et al. Local restoration of dystrophin expression with the morpholino oligomer avi-4658 in duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol. 2009;8:918–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brown M, Figge J, Hansen U, Wright C, Jeang KT, Khoury G, et al. Lac repressor can regulate expression from a hybrid SV40 early promoter containing a lac operator in animal cells. Cell. 1987;49:603–12.

    Article  CAS  PubMed  Google Scholar 

  23. Hu MC, Davidson N. The inducible lac operator-repressor system is functional in mammalian cells. Cell. 1987;48:555–66.

    Article  CAS  PubMed  Google Scholar 

  24. Friedman AD, Triezenberg SJ, McKnight SL. Expression of a truncated viral trans-activator selectively impedes lytic infection by its cognate virus. Nature. 1988;335:452–4.

    Article  CAS  PubMed  Google Scholar 

  25. Trono D, Feinberg MB, Baltimore D. HIV-1 Gag mutants can dominantly interfere with the replication of the wild-type virus. Cell. 1989;59:113–20.

    Article  CAS  PubMed  Google Scholar 

  26. Wang XF, Calame K. Sv40 enhancer-binding factors are required at the establishment but not the maintenance step of enhancer-dependent transcriptional activation. Cell. 1986;47:241–7.

    Article  CAS  PubMed  Google Scholar 

  27. Park YG, Nesterova M, Agrawal S, Cho-Chung YS. Dual blockade of cyclic amp response element- (CRE) and AP-1-directed transcription by cre-transcription factor decoy oligonucleotide. gene-specific inhibition of tumor growth. J Biol Chem. 1999;274:1573–80.

    Article  CAS  PubMed  Google Scholar 

  28. Mann MJ, Dzau VJ. Therapeutic applications of transcription factor decoy oligonucleotides. J Clin Invest. 2000;106:1071–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. MacQuarrie KL, Fong AP, Morse RH, Tapscott SJ. Genome-wide transcription factor binding: beyond direct target regulation. Trends Genet. 2011;27:141–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Leung TH, Hoffmann A, Baltimore D. One nucleotide in a kappaB site can determine cofactor specificity for NF-kappaB dimers. Cell. 2004;118:453–64.

    Article  CAS  PubMed  Google Scholar 

  31. Bielinska A, Shivdasani RA, Zhang LQ, Nabel GJ. Regulation of gene expression with double-stranded phosphorothioate oligonucleotides. Science. 1990;250:997–1000.

    Article  CAS  PubMed  Google Scholar 

  32. Sullenger BA, Gallardo HF, Ungers GE, Gilboa E. Overexpression of tar sequences renders cells resistant to human immunodeficiency virus replication. Cell. 1990;63:601–8.

    Article  CAS  PubMed  Google Scholar 

  33. Morishita R, Gibbons GH, Horiuchi M, Ellison KE, Nakama M, Zhang L, et al. A gene therapy strategy using a transcription factor decoy of the e2f binding site inhibits smooth muscle proliferation in vivo. Proc Natl Acad Sci U S A. 1995;92:5855–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang X, Liu Q, Hou B, Zhang W, Yan M, Jia H, et al. Concomitant targeting of multiple key transcription factors effectively disrupts cancer stem cells enriched in side population of human pancreatic cancer cells. PLoS One. 2013;8:e73942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rad SM, Bamdad T, Sadeghizadeh M, Arefian E, Lotfinia M, Ghanipour M. Transcription factor decoy against stem cells master regulators, nanog and oct-4: A possible approach for differentiation therapy. Tumour Biol. 2014. doi:10.1007/s13277-014-2884-y.

  36. Seyed Mohammad Ali Hosseini Rad MSB, Arefian E, Kaveh Jaseb MS, Saki N. The role of micrornas in stemness of cancer stem cells. Oncol Rev. 2013;7:53–8.

    Google Scholar 

  37. Penolazzi L, Lambertini E, Aguiari G, del Senno L, Piva R. Modulation of estrogen receptor gene expression in human breast cancer cells: a decoy strategy with specific pcr-generated DNA fragments. Breast Cancer Res Treat. 1998;49:227–35.

    Article  CAS  PubMed  Google Scholar 

  38. Khaled AR, Butfiloski EJ, Sobel ES, Schiffenbauer J. Use of phosphorothioate-modified oligodeoxynucleotides to inhibit NF-kappaB expression and lymphocyte function. Clin Immunol Immunopathol. 1998;86:170–9.

    Article  CAS  PubMed  Google Scholar 

  39. Morishita R, Higaki J, Tomita N, Ogihara T. Application of transcription factor "Decoy" Strategy as means of gene therapy and study of gene expression in cardiovascular disease. Circ Res. 1998;82:1023–8.

    Article  CAS  PubMed  Google Scholar 

  40. Cooper Jr JA, Parks JM, Carcelen R, Kahlon SS, Sheffield M, Culbreth R. Attenuation of interleukin-8 production by inhibiting nuclear factor-kappab translocation using decoy oligonucleotides. Biochem Pharmacol. 2000;59:605–13.

    Article  CAS  PubMed  Google Scholar 

  41. Shibuya T, Takei Y, Hirose M, Ikejima K, Enomoto N, Maruyama A, et al. A double-strand decoy DNA oligomer for NF-kappaB inhibits TNFalpha-induced ICAM-1 expression in sinusoidal endothelial cells. Biochem Biophys Res Commun. 2002;298:10–6.

    Article  CAS  PubMed  Google Scholar 

  42. Gao H, Xiao J, Sun Q, Lin H, Bai Y, Yang L, et al. A single decoy oligodeoxynucleotides targeting multiple oncoproteins produces strong anticancer effects. Mol Pharmacol. 2006;70:1621–9.

    Article  CAS  PubMed  Google Scholar 

  43. Dzau VJ, Horiuchi M. In vivo gene transfer and gene modulation in hypertension research. Hypertension. 1996;28:1132–7.

    Article  CAS  PubMed  Google Scholar 

  44. Tomita N, Kashihara N, Morishita R. Transcription factor decoy oligonucleotide-based therapeutic strategy for renal disease. Clin Exp Nephrol. 2007;11:7–17.

    Article  CAS  PubMed  Google Scholar 

  45. Jiang C, Xuan Z, Zhao F, Zhang MQ. Tred: A transcriptional regulatory element database, new entries and other development. Nucleic Acids Res. 2007;35:D137–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carey MF, Peterson CL, Smale ST. Chromatin immunoprecipitation (chip). Cold Spring Harbor Protocols. 2009;2009:pdb. prot5279.

  47. Penolazzi L, Lambertini E, Aguiari G, del Senno L, Piva R. Cis element 'decoy' against the upstream promoter of the human estrogen receptor gene. Biochim Biophys Acta. 2000;1492:560–7.

    Article  CAS  PubMed  Google Scholar 

  48. Fennewald SM, Scott EP, Zhang L, Yang X, Aronson JF, Gorenstein DG, et al. Thioaptamer decoy targeting of AP-1 proteins influences cytokine expression and the outcome of arenavirus infections. J Gen Virol. 2007;88:981–90.

    Article  CAS  PubMed  Google Scholar 

  49. Catimel B, Rothacker J, Nice E. The use of biosensors for microaffinity purification: an integrated approach to proteomics. J Biochem Biophys Methods. 2001;49:289–312.

    Article  CAS  PubMed  Google Scholar 

  50. Hellman LM, Fried MG. Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions. Nat Protoc. 2007;2:1849–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Majumder S, Varadharaj S, Ghoshal K, Monani U, Burghes AH, Jacob ST. Identification of a novel cyclic amp-response element (CRE-ii) and the role of CREB-1 in the camp-induced expression of the survival motor neuron (SMN) gene. J Biol Chem. 2004;279:14803–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gambari R. Biospecific interaction analysis: a tool for drug discovery and development. Am J Pharmacogenomics. 2001;1:119–35.

    Article  CAS  PubMed  Google Scholar 

  53. Gambari R, Feriotto G, Rutigliano C, Bianchi N, Mischiati C. Biospecific interaction analysis (BIA) of low-molecular weight DNA-binding drugs. J Pharmacol Exp Ther. 2000;294:370–7.

    CAS  PubMed  Google Scholar 

  54. Henry SP, Giclas PC, Leeds J, Pangburn M, Auletta C, Levin AA, et al. Activation of the alternative pathway of complement by a phosphorothioate oligonucleotide: Potential mechanism of action. J Pharmacol Exp Ther. 1997;281:810–6.

    CAS  PubMed  Google Scholar 

  55. Henry SP, Taylor J, Midgley L, Levin AA, Kornbrust DJ. Evaluation of the toxicity of ISIS 2302, a phosphorothioate oligonucleotide, in a 4-week study in cd-1 mice. Antisense Nucleic Acid Drug Dev. 1997;7:473–81.

    Article  CAS  PubMed  Google Scholar 

  56. Campbell JM, Bacon TA, Wickstrom E. Oligodeoxynucleoside phosphorothioate stability in subcellular extracts, culture media, sera and cerebrospinal fluid. J Biochem Biophys Methods. 1990;20:259–67.

    Article  CAS  PubMed  Google Scholar 

  57. Crooke ST. Progress in antisense technology: The end of the beginning. Methods Enzymol. 2000;313:3–45.

    Article  CAS  PubMed  Google Scholar 

  58. Phillips MI, Zhang YC. Basic principles of using antisense oligonucleotides in vivo. Methods Enzymol. 2000;313:46–56.

    Article  CAS  PubMed  Google Scholar 

  59. Uhlmann E, Peyman A, Breipohl G, Will DW. Pna: Synthetic polyamide nucleic acids with unusual binding properties. Angew Chem Int Ed. 1998;37:2796–823.

    Article  CAS  Google Scholar 

  60. Mischiati C, Borgatti M, Bianchi N, Rutigliano C, Tomassetti M, Feriotto G, et al. Interaction of the human NF-kappaB p52 transcription factor with DNA-PNA hybrids mimicking the NF-kappaB binding sites of the human immunodeficiency virus type 1 promoter. J Biol Chem. 1999;274:33114–22.

    Article  CAS  PubMed  Google Scholar 

  61. Borgatti M, Breda L, Cortesi R, Nastruzzi C, Romanelli A, Saviano M, et al. Cationic liposomes as delivery systems for double-stranded pna-DNA chimeras exhibiting decoy activity against NF-kappaB transcription factors. Biochem Pharmacol. 2002;64:609–16.

    Article  CAS  PubMed  Google Scholar 

  62. Wahlestedt C, Salmi P, Good L, Kela J, Johnsson T, Hokfelt T, et al. Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci U S A. 2000;97:5633–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Crinelli R, Bianchi M, Gentilini L, Magnani M. Design and characterization of decoy oligonucleotides containing locked nucleic acids. Nucleic Acids Res. 2002;30:2435–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kubareva EA, Fedorova OA, Gottikh MB, Tanaka H, Malvy C, Shabarova ZA. NF-kappaB p50 subunit cross-linking to DNA duplexes, containing a monosubstituted pyrophosphate internucleotide bond. FEBS Lett. 1996;381:35–8.

    Article  CAS  PubMed  Google Scholar 

  65. Lindgren M, Hallbrink M, Prochiantz A, Langel U. Cell-penetrating peptides. Trends Pharmacol Sci. 2000;21:99–103.

    Article  CAS  PubMed  Google Scholar 

  66. Brooks NA, Pouniotis DS, Tang CK, Apostolopoulos V, Pietersz GA. Cell-penetrating peptides: application in vaccine delivery. Biochim Biophys Acta. 1805;2010:25–34.

    Google Scholar 

  67. Chauhan A, Tikoo A, Kapur AK, Singh M. The taming of the cell penetrating domain of the HIV Tat: Myths and realities. J Control Release. 2007;117:148–62.

    Article  CAS  PubMed  Google Scholar 

  68. El-Andaloussi S, Johansson H, Magnusdottir A, Jarver P, Lundberg P, Langel U. Tp10, a delivery vector for decoy oligonucleotides targeting the myc protein. J Control Release. 2005;110:189–201.

    Article  CAS  PubMed  Google Scholar 

  69. Buchanan KD, Huang SL, Kim H, McPherson DD, MacDonald RC. Encapsulation of NF-kappaB decoy oligonucleotides within echogenic liposomes and ultrasound-triggered release. J Control Release. 2009;141:193–8.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Takahashi T, Togo S, Kumamoto T, Watanabe K, Kubota T, Ichikawa Y, et al. Transfection of NF-kappaB decoy oligodeoxynucleotides into macrophages reduces murine fatal liver failure after excessive hepatectomy. J Surg Res. 2009;154:179–86.

    Article  CAS  PubMed  Google Scholar 

  71. Ohmori K, Takeda S, Miyoshi S, Minami M, Nakane S, Ohta M, et al. Attenuation of lung injury in allograft rejection using NF-kappaB decoy transfection-novel strategy for use in lung transplantation. Eur J Cardiothorac Surg. 2005;27:23–7.

    Article  PubMed  Google Scholar 

  72. Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol. 2005;23:709–17.

    Article  CAS  PubMed  Google Scholar 

  73. McNamara 2nd JO, Andrechek ER, Wang Y, Viles KD, Rempel RE, Gilboa E, et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol. 2006;24:1005–15.

    Article  CAS  PubMed  Google Scholar 

  74. Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007;448:39–43.

    Article  CAS  PubMed  Google Scholar 

  75. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5.

    Article  CAS  PubMed  Google Scholar 

  76. Keates AC, Fruehauf JH, Xiang S, Parker PD, Li CJ. Cequent pharmaceuticals, inc.: the biological pitcher for RNAi therapeutics. Pharmacogenomics. 2007;8:867–71.

    Article  CAS  PubMed  Google Scholar 

  77. Xiang S, Fruehauf J, Li CJ. Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat Biotechnol. 2006;24:697–702.

    Article  CAS  PubMed  Google Scholar 

  78. MacDiarmid JA, Mugridge NB, Weiss JC, Phillips L, Burn AL, Paulin RP, et al. Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics. Cancer Cell. 2007;11:431–45.

    Article  CAS  PubMed  Google Scholar 

  79. Timko BP, Whitehead K, Gao W, Kohane DS, Farokhzad O, Anderson D, et al. Advances in drug delivery. Annu Rev Mater Res. 2011;41:1–20.

    Article  CAS  Google Scholar 

  80. Huang L, Liu Y. In vivo delivery of RNAi with lipid-based nanoparticles. Annu Rev Biomed Eng. 2011;13:507–30.

    Article  CAS  PubMed  Google Scholar 

  81. Jansen B, Zangemeister-Wittke U. Antisense therapy for cancer–the time of truth. Lancet Oncol. 2002;3:672–83.

    Article  CAS  PubMed  Google Scholar 

  82. Coppelli FM, Grandis JR. Oligonucleotides as anticancer agents: From the benchside to the clinic and beyond. Curr Pharm Des. 2005;11:2825–40.

    Article  CAS  PubMed  Google Scholar 

  83. Uetsuka H, Haisa M, Kimura M, Gunduz M, Kaneda Y, Ohkawa T, et al. Inhibition of inducible NF-kappaB activity reduces chemoresistance to 5-fluorouracil in human stomach cancer cell line. Exp Cell Res. 2003;289:27–35.

    Article  CAS  PubMed  Google Scholar 

  84. Kim KH, Lee WR, Kang YN, Chang YC, Park KK. Inhibitory effect of nuclear factor-kappab decoy oligodeoxynucleotide on liver fibrosis through regulation of the epithelial-mesenchymal transition. Hum Gene Ther. 2014;25:721–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Leong PL, Andrews GA, Johnson DE, Dyer KF, Xi S, Mai JC, et al. Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc Natl Acad Sci U S A. 2003;100:4138–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu M, Wang F, Wen Z, Shi M, Zhang H. Blockage of Stat3 signaling pathway with a decoy oligodeoxynucleotide inhibits growth of human ovarian cancer cells. Cancer Investig. 2014;32:8–12.

    Article  CAS  Google Scholar 

  87. Zhang X, Liu P, Zhang B, Mao H, Shen L, Ma Y. Inhibitory effects of Stat3 decoy oligodeoxynucleotides on human epithelial ovarian cancer cell growth in vivo. Int J Mol Med. 2013;32:623–8.

    CAS  PubMed  Google Scholar 

  88. Zhang X, Zhang J, Wang L, Wei H, Tian Z. Therapeutic effects of Stat3 decoy oligodeoxynucleotide on human lung cancer in xenograft mice. BMC Cancer. 2007;7:149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sun X, Sui Q, Zhang C, Tian Z, Zhang J. Targeting blockage of Stat3 in hepatocellular carcinoma cells augments NK cell functions via reverse hepatocellular carcinoma-induced immune suppression. Mol Cancer Ther. 2013;12:2885–96.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang X, Xiao W, Wang L, Tian Z, Zhang J. Deactivation of signal transducer and activator of transcription 3 reverses chemotherapeutics resistance of leukemia cells via down-regulating P-gp. PLoS One. 2011;6:e20965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ahn JD, Kim CH, Magae J, Kim YH, Kim HJ, Park KK, et al. E2f decoy oligodeoxynucleotides effectively inhibit growth of human tumor cells. Biochem Biophys Res Commun. 2003;310:1048–53.

    Article  CAS  PubMed  Google Scholar 

  92. Obama K, Kanai M, Kawai Y, Fukushima M, Takabayashi A. Role of retinoblastoma protein and E2F-1 transcription factor in the acquisition of 5-fluorouracil resistance by colon cancer cells. Int J Oncol. 2002;21:309–14.

    CAS  PubMed  Google Scholar 

  93. Alper O, Bergmann-Leitner ES, Abrams S, Cho-Chung YS. Apoptosis, growth arrest and suppression of invasiveness by CRE-decoy oligonucleotide in ovarian cancer cells: Protein kinase a downregulation and cytoplasmic export of CRE-binding proteins. Mol Cell Biochem. 2001;218:55–63.

    Article  CAS  PubMed  Google Scholar 

  94. Zhu X, Li Q, Li S, Chen B, Zou H. HIF-1alpha decoy oligodeoxynucleotides inhibit HIF-1alpha signaling and breast cancer proliferation. Int J Oncol. 2015;46:215–22.

    CAS  PubMed  Google Scholar 

  95. Novak EM, Metzger M, Chammas R, da Costa M, Dantas K, Manabe C, et al. Downregulation of TNF-alpha and VEGF expression by Sp1 decoy oligodeoxynucleotides in mouse melanoma tumor. Gene Ther. 2003;10:1992–7.

    Article  CAS  PubMed  Google Scholar 

  96. Membrino A, Cogoi S, Pedersen EB, Xodo LE. G4-DNA formation in the HRAS promoter and rational design of decoy oligonucleotides for cancer therapy. PLoS One. 2011;6:e24421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. El-Sagheer A. H BT. Synthesis, serum stability and cell uptake of cyclic and hairpin decoy oligonucleotides for TCF/LEF and GLI transcription factors. Int J Pept Res Ther. 2008;14:367–72.

    Article  CAS  Google Scholar 

  98. Heilbronn R, Weger S. Viral vectors for gene transfer: Current status of gene therapeutics. Handb Exp Pharmacol. 2010:143-170.

  99. Luo J, Luo Y, Sun J, Zhou Y, Zhang Y, Yang X. Adeno-associated virus-mediated cancer gene therapy: current status. Cancer Lett. 2015;356:347–56.

    Article  CAS  PubMed  Google Scholar 

  100. Cooray S, Howe SJ, Thrasher AJ. Retrovirus and lentivirus vector design and methods of cell conditioning. Methods Enzymol. 2012;507:29–57.

    Article  CAS  PubMed  Google Scholar 

  101. Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, et al. RNAi-mediated gene silencing in non-human primates. Nature. 2006;441:111–4.

    Article  CAS  PubMed  Google Scholar 

  102. Love KT, Mahon KP, Levins CG, Whitehead KA, Querbes W, Dorkin JR, et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci U S A. 2010;107:1864–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brian P. Timko KW, Weiwei Gao. Advances in drug delivery. Ann Rev Mater Res. 2011.

  104. Zomer A, Vendrig T, Hopmans ES, van Eijndhoven M, Middeldorp JM, Pegtel DM. Exosomes: Fit to deliver small RNA. Commun Integr Biol. 2010;3:447–50.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We appreciate Nadia Chamani for assistance in preparing the figures.

Author disclosure statement

Authors disclose any commercial associations that might create a conflict of interest in connection with submitted manuscripts.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taravat Bamdad or Ehsan Arefian.

Additional information

Seyed Mohammad Ali Hosseini Rad and Lida Langroudi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rad, S.M.A.H., Langroudi, L., Kouhkan, F. et al. Transcription factor decoy: a pre-transcriptional approach for gene downregulation purpose in cancer. Tumor Biol. 36, 4871–4881 (2015). https://doi.org/10.1007/s13277-015-3344-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3344-z

Keywords

Navigation