Advertisement

Tumor Biology

, Volume 36, Issue 8, pp 6525–6532 | Cite as

Impact of TGF-β1 -509C/T and 869T/C polymorphisms on glioma risk and patient prognosis

  • Joana Vieira de Castro
  • Céline S. Gonçalves
  • Sandra Costa
  • Paulo Linhares
  • Rui Vaz
  • Ricardo Nabiço
  • Júlia Amorim
  • Marta Viana-Pereira
  • Rui M. Reis
  • Bruno M. Costa
Research Article

Abstract

Transforming growth factor beta (TGF-β) plays an important role in carcinogenesis. Two polymorphisms in the TGF-β1 gene (-509C/T and 869T/C) were described to influence susceptibility to gastric and breast cancers. The 869T/C polymorphism was also associated with overall survival in breast cancer patients. In the present study, we investigated the relevance of these TGF-β1 polymorphism in glioma risk and prognosis. A case-control study that included 114 glioma patients and 138 cancer-free controls was performed. Single nucleotide polymorphisms (SNPs) were evaluated by polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP). Univariate and multivariate logistic regression analyses were used to calculate odds ratio (OR) and 95 % confidence intervals (95 % CI). The influence of TGF-β1 -509C/T and 869T/C polymorphisms on glioma patient survival was evaluated by a Cox regression model adjusted for patients’ age and sex and represented in Kaplan-Meier curves. Our results demonstrated that TGF-β1 gene polymorphisms -509C/T and 869T/C are not significantly associated with glioma risk. Survival analyses showed that the homozygous -509TT genotype associates with longer overall survival of glioblastoma (GBM) patients when compared with patients carrying CC + CT genotypes (OR, 2.41; 95 % CI, 1.06–5.50; p = 0.036). In addition, the homozygous 869CC genotype is associated with increased overall survival of GBM patients when compared with 869TT + TC genotypes (OR, 2.62; 95 % CI, 1.11–6.17; p = 0.027). In conclusion, this study suggests that TGF-β1 -509C/T and 869T/C polymorphisms are not significantly associated with risk for developing gliomas but may be relevant prognostic biomarkers in GBM patients.

Keywords

Glioma Glioblastoma Transforming growth factor beta 1 Single nucleotide polymorphisms Risk Prognosis 

Notes

Acknowledgments

This work was supported by Fundação para a Ciência e Tecnologia, Portugal (PTDC/SAU-GMG/113795/2009 and SFRH/BPD/33612/2009 to B.M.C.; SFRH/BD/88121/2012 to J.V.C.; SFRH/BD/92786/2013 to C.S.G.; PTDC/SAU-ONC/115513/2009 to R.M.R.).

Conflict of interest

None.

References

  1. 1.
    Boyle P, Levin B. World cancer report 2008. IARC Press, International Agency for Research on Cancer, 2008.Google Scholar
  2. 2.
    Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol. 2006;2:494–503. quiz 491 p following 516.CrossRefPubMedGoogle Scholar
  3. 3.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 who classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321:1807–12.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Butowski NA, Sneed PK, Chang SM. Diagnosis and treatment of recurrent high-grade astrocytoma. J Clin Oncol. 2006;24:1273–80.CrossRefPubMedGoogle Scholar
  6. 6.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRefPubMedGoogle Scholar
  7. 7.
    Bondy ML, Scheurer ME, Malmer B, Barnholtz-Sloan JS, Davis FG, Il’yasova D, et al. Brain tumor epidemiology: consensus from the brain tumor epidemiology consortium. Cancer. 2008;113:1953–68.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Reuss D, von Deimling A. Hereditary tumor syndromes and gliomas. Recent Results Cancer Res. 2009;171:83–102.CrossRefPubMedGoogle Scholar
  9. 9.
    Wrensch M, Lee M, Miike R, Newman B, Barger G, Davis R, et al. Familial and personal medical history of cancer and nervous system conditions among adults with glioma and controls. Am J Epidemiol. 1997;145:581–93.CrossRefPubMedGoogle Scholar
  10. 10.
    Hocking B. Occupational exposure to ionizing and non-ionizing radiation and risk of glioma. Occup Med (Lond). 2008;58:148–9. author reply 149.CrossRefGoogle Scholar
  11. 11.
    Ron E, Modan B, Boice Jr JD, Alfandary E, Stovall M, Chetrit A, et al. Tumors of the brain and nervous system after radiotherapy in childhood. N Engl J Med. 1988;319:1033–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, et al. Genome-wide association study identifies five susceptibility loci for glioma. Nat Genet. 2009;41:899–904.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, et al. Variants in the cdkn2b and rtel1 regions are associated with high-grade glioma susceptibility. Nat Genet. 2009;41:905–8.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Massague J. Tgfbeta in cancer. Cell. 2008;134:215–30.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Derynck R, Zhang YE. Smad-dependent and smad-independent pathways in tgf-beta family signalling. Nature. 2003;425:577–84.CrossRefPubMedGoogle Scholar
  16. 16.
    Kaminska B, Kocyk M, Kijewska M. Tgf beta signaling and its role in glioma pathogenesis. Adv Exp Med Biol. 2013;986:171–87.CrossRefPubMedGoogle Scholar
  17. 17.
    Rich JN. The role of transforming growth factor-beta in primary brain tumors. Front Biosci. 2003;8:e245–60.CrossRefPubMedGoogle Scholar
  18. 18.
    Penuelas S, Anido J, Prieto-Sanchez RM, Folch G, Barba I, Cuartas I, et al. Tgf-beta increases glioma-initiating cell self-renewal through the induction of lif in human glioblastoma. Cancer Cell. 2009;15:315–27.CrossRefPubMedGoogle Scholar
  19. 19.
    Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR, et al. A transforming growth factorbeta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res. 2003;63:2610–5.PubMedGoogle Scholar
  20. 20.
    Cai Q, Tang Y, Zhang M, Shang Z, Li G, Tian J, et al. Tgfbeta1 leu10pro polymorphism contributes to the development of prostate cancer: evidence from a meta-analysis. Tumour Biol. 2014;35:667–73.CrossRefPubMedGoogle Scholar
  21. 21.
    Chang WW, Zhang L, Su H, Yao YS. An updated meta-analysis of transforming growth factor-beta1 gene: three polymorphisms with gastric cancer. Tumour Biol. 2014;35:2837–44.CrossRefPubMedGoogle Scholar
  22. 22.
    Migita K, Miyazoe S, Maeda Y, Daikoku M, Abiru S, Ueki T, et al. Cytokine gene polymorphisms in japanese patients with hepatitis b virus infection–association between tgf-beta1 polymorphisms and hepatocellular carcinoma. J Hepatol. 2005;42:505–10.CrossRefPubMedGoogle Scholar
  23. 23.
    Li K, Xia F, Zhang K, Mo A, Liu L. Association of a tgf-b1-509c/t polymorphism with gastric cancer risk: a meta-analysis. Ann Hum Genet. 2013;77:1–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Gonzalez-Zuloeta Ladd AM, Arias-Vasquez A, Siemes C, Coebergh JW, Hofman A, Witteman J, et al. Transforming-growth factor beta1 leu10pro polymorphism and breast cancer morbidity. Eur J Cancer. 2007;43:371–4.CrossRefPubMedGoogle Scholar
  25. 25.
    Shu XO, Gao YT, Cai Q, Pierce L, Cai H, Ruan ZX, et al. Genetic polymorphisms in the tgf-beta 1 gene and breast cancer survival: a report from the shanghai breast cancer study. Cancer Res. 2004;64:836–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Ewart-Toland A, Chan JM, Yuan J, Balmain A, Ma J. A gain of function tgfb1 polymorphism may be associated with late stage prostate cancer. Cancer Epidemiol Biomarkers Prev. 2004;13:759–64.PubMedGoogle Scholar
  27. 27.
    Kang HG, Chae MH, Park JM, Kim EJ, Park JH, Kam S, et al. Polymorphisms in tgf-beta1 gene and the risk of lung cancer. Lung Cancer. 2006;52:1–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Luedecking EK, DeKosky ST, Mehdi H, Ganguli M, Kamboh MI. Analysis of genetic polymorphisms in the transforming growth factor-beta1 gene and the risk of alzheimer’s disease. Hum Genet. 2000;106:565–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, et al. Genetic control of the circulating concentration of transforming growth factor type beta1. Hum Mol Genet. 1999;8:93–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Kaklamani VG, Baddi L, Liu J, Rosman D, Phukan S, Bradley C, et al. Combined genetic assessment of transforming growth factor-beta signaling pathway variants may predict breast cancer risk. Cancer Res. 2005;65:3454–61.PubMedGoogle Scholar
  31. 31.
    Watanabe Y, Kinoshita A, Yamada T, Ohta T, Kishino T, Matsumoto N, et al. A catalog of 106 single-nucleotide polymorphisms (snps) and 11 other types of variations in genes for transforming growth factor-beta1 (tgf-beta1) and its signaling pathway. J Hum Genet. 2002;47:478–83.CrossRefPubMedGoogle Scholar
  32. 32.
    Li X, Yue ZC, Zhang YY, Bai J, Meng XN, Geng JS, et al. Elevated serum level and gene polymorphisms of tgf-beta1 in gastric cancer. J Clin Lab Anal. 2008;22:164–71.CrossRefPubMedGoogle Scholar
  33. 33.
    Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med. 2000;342:1350–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Elliott RL, Blobe GC. Role of transforming growth factor beta in human cancer. J Clin Oncol. 2005;23:2078–93.CrossRefPubMedGoogle Scholar
  35. 35.
    Derynck R, Akhurst RJ, Balmain A. Tgf-beta signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117–29.CrossRefPubMedGoogle Scholar
  36. 36.
    Mullenbach R, Lagoda PJ, Welter C. An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet. 1989;5:391.PubMedGoogle Scholar
  37. 37.
    Wu GY, Hasenberg T, Magdeburg R, Bonninghoff R, Sturm JW, Keese M. Association between egf, tgf-beta1, vegf gene polymorphism and colorectal cancer. World J Surg. 2009;33:124–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Lima-Ramos V, Pacheco-Figueiredo L, Costa S, Pardal F, Silva A, Amorim J, et al. Tp53 codon 72 polymorphism in susceptibility, overall survival, and adjuvant therapy response of gliomas. Cancer Genet Cytogenet. 2008;180:14–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Liu Y, Scheurer ME, El-Zein R, Cao Y, Do KA, Gilbert M, et al. Association and interactions between DNA repair gene polymorphisms and adult glioma. Cancer Epidemiol Biomarkers Prev. 2009;18:204–14.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang LE, Bondy ML, Shen H, El-Zein R, Aldape K, Cao Y, et al. Polymorphisms of DNA repair genes and risk of glioma. Cancer Res. 2004;64:5560–3.CrossRefPubMedGoogle Scholar
  41. 41.
    Wiencke JK, Aldape K, McMillan A, Wiemels J, Moghadassi M, Miike R, et al. Molecular features of adult glioma associated with patient race/ethnicity, age, and a polymorphism in o6-methylguanine-DNA-methyltransferase. Cancer Epidemiol Biomark Prev. 2005;14:1774–83.CrossRefGoogle Scholar
  42. 42.
    Elexpuru-Camiruaga J, Buxton N, Kandula V, Dias PS, Campbell D, McIntosh J, et al. Susceptibility to astrocytoma and meningioma: influence of allelism at glutathione s-transferase (gstt1 and gstm1) and cytochrome p-450 (cyp2d6) loci. Cancer Res. 1995;55:4237–9.PubMedGoogle Scholar
  43. 43.
    Zhao P, Zhao L, Zou P, Lu A, Liu N, Yan W, et al. Genetic oxidative stress variants and glioma risk in a chinese population: a hospital-based case-control study. BMC Cancer. 2012;12:617.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Costa BM, Ferreira P, Costa S, Canedo P, Oliveira P, Silva A, et al. Association between functional egf + 61 polymorphism and glioma risk. Clin Cancer Res. 2007;13:2621–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Costa BM, Viana-Pereira M, Fernandes R, Costa S, Linhares P, Vaz R, et al. Impact of egfr genetic variants on glioma risk and patient outcome. Cancer Epidemiol Biomarkers Prev. 2011;20:2610–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Jiang H, Lian M, Xie J, Li J, Wang M. Three single nucleotide polymorphisms of the vascular endothelial growth factor (vegf) gene and glioma risk in a chinese population. J Int Med Res. 2013;41:1484–94.CrossRefPubMedGoogle Scholar
  47. 47.
    Pandey JP, Kaur N, Costa S, Amorim J, Nabico R, Linhares P, et al. Immunoglobulin genes implicated in glioma risk. Oncoimmunology. 2014;3:e28609.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Krippl P, Langsenlehner U, Renner W, Yazdani-Biuki B, Wolf G, Wascher TC, et al. The l10p polymorphism of the transforming growth factor-beta 1 gene is not associated with breast cancer risk. Cancer Lett. 2003;201:181–4.CrossRefPubMedGoogle Scholar
  49. 49.
    Qi P, Ruan CP, Wang H, Zhou FG, Zhao YP, Gu X, et al. 509c>t polymorphism in the tgf-beta1 gene promoter is not associated with susceptibility to and progression of colorectal cancer in chinese. Color Dis: Off J Assoc Coloproctol G B Irel. 2010;12:1153–8.CrossRefGoogle Scholar
  50. 50.
    Crivello A, Giacalone A, Vaglica M, Scola L, Forte GI, Macaluso MC, et al. Regulatory cytokine gene polymorphisms and risk of colorectal carcinoma. Ann N Y Acad Sci. 2006;1089:98–103.CrossRefPubMedGoogle Scholar
  51. 51.
    Macarthur M, Sharp L, Hold GL, Little J, El-Omar EM. The role of cytokine gene polymorphisms in colorectal cancer and their interaction with aspirin use in the northeast of scotland. Cancer Epidemiol Biomarkers Prev. 2005;14:1613–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Saltzman BS, Yamamoto JF, Decker R, Yokochi L, Theriault AG, Vogt TM, et al. Association of genetic variation in the transforming growth factor beta-1 gene with serum levels and risk of colorectal neoplasia. Cancer Res. 2008;68:1236–44.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zhang Y, Liu B, Jin M, Ni Q, Liang X, Ma X, et al. Genetic polymorphisms of transforming growth factor-beta1 and its receptors and colorectal cancer susceptibility: a population-based case-control study in china. Cancer Lett. 2009;275:102–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Benigni A, Zoja C, Corna D, Zatelli C, Conti S, Campana M, et al. Add-on anti-tgf-beta antibody to ace inhibitor arrests progressive diabetic nephropathy in the rat. J Am Soc Nephrol: JASN. 2003;14:1816–24.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Joana Vieira de Castro
    • 1
    • 2
  • Céline S. Gonçalves
    • 1
    • 2
  • Sandra Costa
    • 1
    • 2
  • Paulo Linhares
    • 3
  • Rui Vaz
    • 3
  • Ricardo Nabiço
    • 4
  • Júlia Amorim
    • 4
  • Marta Viana-Pereira
    • 1
    • 2
  • Rui M. Reis
    • 1
    • 2
    • 5
  • Bruno M. Costa
    • 1
    • 2
  1. 1.Life and Health Sciences Research Institute (ICVS)School of Health Sciences, University of MinhoBragaPortugal
  2. 2.ICVS/3B’s - PT Government Associate LaboratoryBraga/GuimarãesPortugal
  3. 3.Department of NeurosurgeryHospital São JoãoPortoPortugal
  4. 4.Department of OncologyHospital de BragaBragaPortugal
  5. 5.Molecular Oncology Research CenterBarretos Cancer HospitalBarretosBrazil

Personalised recommendations