Advertisement

Tumor Biology

, Volume 36, Issue 8, pp 6477–6483 | Cite as

Platelet VEGF and serum TGF-β1 levels predict chemotherapy response in non-small cell lung cancer patients

  • Bao-Hong Fu
  • Zhan-Zhao Fu
  • Wei Meng
  • Tao Gu
  • Xiao-Dong Sun
  • Zhi Zhang
Research Article

Abstract

We examined the levels of platelet vascular endothelial growth factor (VEGFPLT) and serum level of transforming growth factor beta 1 (TGF-β1) in non-small cell lung cancer (NSCLC) patients before and after chemotherapy to assess their clinical value as biomarkers. A total of 115 subjects were recruited at the First Hospital of Qinhuangdao between July 2012 and October 2013, including 65 NSCLC patients receiving chemotherapy (NSCLC group) and 50 healthy controls (control group). All NSCLC patients received gemcitabine plus cisplatin (GP regimen) for a total of two courses. VEGFPLT and serum TGF-β1 levels were measured before and after chemotherapy using enzyme-linked immunosorbent assay (ELISA). Platelet count was obtained using the Abbott CD-1600 auto blood analyzer. NSCLC group was categorized into complete response (CR) plus partial response (PR) group and stable disease (SD) plus progressive disease (PD) group based on the results of CT scans obtained 1 week after chemotherapy. Our results revealed that VEGFPLT and serum TGF-β1 levels were significantly higher in NSCLC group before chemotherapy, compared to the control group (VEGFPLT, 0.813 ± 0.072 vs. 0.547 ± 0.024; t = 26.48; P < 0.001 and TGF-β1, 46.00 ± 4.47 vs. 16.43 ± 2.12; t = 44.87; P < 0.001). Importantly, VEGFPLT and serum TGF-β1 levels decreased significantly after chemotherapy in CR + PR group in comparison with before chemotherapy (VEGFPLT, 0.453 ± 0.078 vs. 0.814 ± 0.127; t = 15.51; P < 0.001 and TGF-β1, 20.17 ± 2.43 vs. 42.13 ± 4.54; t = 27.31; P < 0.001). By contrast, VEGFPLT and serum TGF-β1 levels were markedly higher after chemotherapy in the SD + PD group in comparison with before chemotherapy (VEGFPLT, 0.816 ± 0.043 vs. 1.065 ± 0.016; t = 22.38; P < 0.001 and TGF-β1, 41.80 ± 5.46 vs. 45.83 ± 4.62; t = 2.32; P = 0. 03). Our results show that NSCLC patients exhibit high VEGFPLT and serum TGF-β1 levels, and VEGFPLT and TGF-β1 levels correlate with chemotherapy response to GP regimen. Therefore, VEGFPLT and serum TGF-β1 levels are valuable biomarkers in clinical monitoring of NSCLC patients.

Keywords

Non-small cell lung cancer Vascular endothelial growth factor Platelet vascular endothelial growth factor level Transforming growth factor beta 1 Chemotherapy Clinical value Disease activity Enzyme-linked immunosorbent assay 

Abbreviations

NSCLC

Non-small cell lung cancer

VEGF

Vascular endothelial growth factor

TGF-β1

Transforming growth factor beta 1

GP

Gemcitabine plus cisplatin

RECIST

Response evaluation criteria in solid tumors

CR

Complete response

PD

Progressive disease

SD

Stable disease

Notes

Acknowledgments

We would like to acknowledge the reviewers for their helpful comments on this paper.

Conflicts of interests

None

Authors’ contributions

BH Fu and ZZ Fu designed, conceived, and supervised the study and performed the examination and the analysis. W Meng and T Gu conceived and supervised the study, performed the statistical analysis, and drafted the paper. XD Sun interpreted the results and revised the paper. Z Zhang designed the study and interpreted the results. All authors read and approved the final paper.

References

  1. 1.
    National Lung Screening Trial Research T, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. New Engl J Med. 2011;365(5):395–409.CrossRefGoogle Scholar
  2. 2.
    Jia Y, Zang A, Shang Y, Yang H, Song Z, Wang Z, et al. Microrna-146a rs2910164 polymorphism is associated with susceptibility to non-small cell lung cancer in the chinese population. Med Oncol. 2014;31(10):194.CrossRefPubMedGoogle Scholar
  3. 3.
    Wu H, Qiao N, Wang Y, Jiang M, Wang S, Wang C, et al. Association between the telomerase reverse transcriptase (tert) rs2736098 polymorphism and cancer risk: evidence from a case-control study of non-small-cell lung cancer and a meta-analysis. PLoS One. 2013;8(11):e76372.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lopez-Cima MF, Garcia-Perez J, Perez-Gomez B, Aragones N, Lopez-Abente G, Tardon A, et al. Lung cancer risk and pollution in an industrial region of northern Spain: a hospital-based case-control study. Int J Health Geogr. 2011;10:10.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Xu J, Yin Z, Gao W, Liu L, Yin Y, Liu P, et al. Genetic variation in a microrna-502 minding site in set8 gene confers clinical outcome of non-small cell lung cancer in a chinese population. PLoS One. 2013;8(10):e77024.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Merrow CE, Wang IZ, Podgorsak MB. A dosimetric evaluation of VMAT for the treatment of non-small cell lung cancer. J Appl Clin Med Phys Am Coll Med Phys. 2013;14(1):4110.Google Scholar
  7. 7.
    Xu YH, Lu S. A meta-analysis of STAT3 and phospho-STAT3 expression and survival of patients with non-small-cell lung cancer. Eur J Surg Oncol : J Eur Soc Surg Oncol Br Assoc Surg Oncol. 2014;40(3):311–7.CrossRefGoogle Scholar
  8. 8.
    Tang S, Pan Y, Wang Y, Hu L, Cao S, Chu M, et al. Genome-wide association study of survival in early-stage non-small cell lung cancer. Ann Surg Oncol. 2015;22(2):630–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA. Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc. 2008;83(5):584–94.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med. 2011;32(4):605–44.CrossRefPubMedGoogle Scholar
  11. 11.
    Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 2011;12(2):175–80.CrossRefPubMedGoogle Scholar
  12. 12.
    Albain KS, Swann RS, Rusch VW, Turrisi 3rd AT, Shepherd FA, Smith C, et al. Radiotherapy plus chemotherapy with or without surgical resection for stage III non-small-cell lung cancer: a phase III randomised controlled trial. Lancet. 2009;374(9687):379–86.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Aerts HJ, Bosmans G, van Baardwijk AA, Dekker AL, Oellers MC, Lambin P, et al. Stability of 18F-deoxyglucose uptake locations within tumor during radiotherapy for NSCLC: a prospective study. Int J Radiat Oncol Biol Phys. 2008;71(5):1402–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A, et al. Ephrin-b2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature. 2010;465(7297):483–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Rondina MT, Weyrich AS, Zimmerman GA. Platelets as cellular effectors of inflammation in vascular diseases. Circ Res. 2013;112(11):1506–19.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Semple JW, Italiano Jr JE, Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011;11(4):264–74.CrossRefPubMedGoogle Scholar
  17. 17.
    Bambace NM, Levis JE, Holmes CE. The effect of P2Y-mediated platelet activation on the release of VEGF and endostatin from platelets. Platelets. 2010;21(2):85–93.CrossRefPubMedGoogle Scholar
  18. 18.
    Dobaczewski M, Chen W, Frangogiannis NG. Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J Mol Cell Cardiol. 2011;51(4):600–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Halwani R, Al-Muhsen S, Al-Jahdali H, Hamid Q. Role of transforming growth factor-beta in airway remodeling in asthma. Am J Respir Cell Mol Biol. 2011;44(2):127–33.CrossRefPubMedGoogle Scholar
  20. 20.
    Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F, et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci U S A. 2011;108(9):3749–54.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bierie B, Moses HL. Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev. 2010;21(1):49–59.CrossRefPubMedGoogle Scholar
  22. 22.
    Foreword IF. Target therapy for cancer: anti-cancer drugs targeting growth-factor signaling molecules. Biol Pharm Bull. 2011;34(12):1773.CrossRefGoogle Scholar
  23. 23.
    Lech-Maranda E, Bienvenu J, Broussais-Guillaumot F, Michallet AS, Warzocha K, Bilinski P, et al. Pretreatment levels of vascular endothelial growth factor in plasma predict a complete remission rate and time to relapse or progression in patients with diffuse large b-cell lymphoma. Arch Immunol Ther Exp. 2013;61(2):165–74.CrossRefGoogle Scholar
  24. 24.
    Wang ST, Liu JJ, Wang CZ, Lin B, Hao YY, Wang YF, et al. Expression and correlation of Lewis y antigen and TGF-beta1 in ovarian epithelial carcinoma. Oncol Rep. 2012;27(4):1065–71.PubMedGoogle Scholar
  25. 25.
    Kim JW, Koh Y, Kim DW, Ahn YO, Kim TM, Han SW, et al. Clinical implications of VEGF, TGF-beta1, and IL-1beta in patients with advanced non-small cell lung cancer. Cancer Res Treat : Off J Korean Cancer Assoc. 2013;45(4):325–33.CrossRefGoogle Scholar
  26. 26.
    Fu ZZ, Gu T, Fu BH, Hua HX, Yang S, Zhang YQ, et al. Relationship of serum levels of VEGF and TGF-beta1 with radiosensitivity of elderly patients with unresectable non-small cell lung cancer. Tumour Biol : J Int Soc Oncodev Biol Med. 2014;35(5):4785–9.CrossRefGoogle Scholar
  27. 27.
    [the helsinki declaration of the world medical association (wma). Ethical principles of medical research involving human subjects]. Polski merkuriusz lekarski : organ Polskiego Towarzystwa Lekarskiego 2014;36(215):298-301.Google Scholar
  28. 28.
    Fu ZZ, Sun XD, Li P, Zhang Z, Li GZ, Gu T, et al. Relationship between serum VEGF level and radiosensitivity of patients with nonsmall cell lung cancer among Asians: a meta-analysis. DNA Cell Biol. 2014;33(7):426–37.CrossRefPubMedGoogle Scholar
  29. 29.
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised recist guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.CrossRefPubMedGoogle Scholar
  30. 30.
    Huang L, Jia J, Liu R. Decreased serum levels of the angiogenic factors VEGF and TGF-beta1 in Alzheimer’s disease and amnestic mild cognitive impairment. Neurosci Lett. 2013;550:60–3.CrossRefPubMedGoogle Scholar
  31. 31.
    Xian LW, Li TP, Wei YE, Wu SP, Ma L. Relation of advanced oxidation protein products with VEGF and TGF-beta1 in colon cancer cells exposed to intermittent hypoxia. Nan fang yi ke da xue xue bao = J South Med Univ. 2011;31(4):619–23.Google Scholar
  32. 32.
    Seo HY, Park JM, Park KH, Kim SJ, Oh SC, Kim BS, et al. Prognostic significance of serum vascular endothelial growth factor per platelet count in unresectable advanced gastric cancer patients. Jpn J Clin Oncol. 2010;40(12):1147–53.CrossRefPubMedGoogle Scholar
  33. 33.
    Peterson JE, Zurakowski D, Italiano Jr JE, Michel LV, Connors S, Oenick M, et al. VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis. 2012;15(2):265–73.CrossRefPubMedGoogle Scholar
  34. 34.
    Koukourakis MI, Limberis V, Tentes I, Kontomanolis E, Kortsaris A, Sivridis E, et al. Serum VEGF levels and tissue activation of VEGFR2/KDR receptors in patients with breast and gynecologic cancer. Cytokine. 2011;53(3):370–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Heng DY, Mackenzie MJ, Vaishampayan UN, Bjarnason GA, Knox JJ, Tan MH, et al. Primary anti-vascular endothelial growth factor (VEGF)-refractory metastatic renal cell carcinoma: clinical characteristics, risk factors, and subsequent therapy. Ann Oncol: Off J Eur Soc Med Oncol ESMO. 2012;23(6):1549–55.CrossRefGoogle Scholar
  36. 36.
    Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer. 2011;2(12):1097–105.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Takai E, Tsukimoto M, Kojima S. TGF-beta1 downregulates COX-2 expression leading to decrease of PGE2 production in human lung cancer A549 cells, which is involved in fibrotic response to TGF-beta1. PLoS One. 2013;8(10):e76346.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mumm JB, Oft M. Cytokine-based transformation of immune surveillance into tumor-promoting inflammation. Oncogene. 2008;27(45):5913–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Hou Y-L, Chen H, Dong Z-H, Xue C-J, Wu Y-F, Luo H-X, et al. Clinical significance of serum transforming growth factor-β1 in lung cancer. Cancer Epidemiol. 2013;37(5):750–3.CrossRefPubMedGoogle Scholar
  40. 40.
    Kumar S, Guleria R, Singh V, Mohan A, Bharti AC, Das BC. Lack of utility of plasma TNF-alpha level in predicting therapeutic efficacy in patients with advanced non-small cell lung cancer. Cytokine. 2010;51(3):245–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Neil JR, Johnson KM, Nemenoff RA, Schiemann WP. Cox-2 inactivates smad signaling and enhances EMT stimulated by TGF-beta through a PGE2-dependent mechanisms. Carcinogenesis. 2008;29(11):2227–35.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kumar S, Guleria R, Mohan A, Singh V, Bharti AC, Das BC. Efficacy of plasma TGF-beta1 level in predicting therapeutic efficacy and prognosis in patients with advanced non-small cell lung cancer. Cancer Investig. 2011;29(3):202–7.CrossRefGoogle Scholar
  43. 43.
    Liu J, Liao S, Diop-Frimpong B, Chen W, Goel S, Naxerova K, et al. TGF-beta blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc Natl Acad Sci U S A. 2012;109(41):16618–23.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL, Boyiadzis M. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1. Haematologica. 2011;96(9):1302–9.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lim MJ, Lin T, Jakowlew SB. Signaling mechanisms of transforming growth factor-β (TGF-β) in cancer: TGF-β induces apoptosis in lung cells by a smad-dependent mechanism. Tumor Suppressor Genes 2012;145:123-125Google Scholar
  46. 46.
    Maitah MY, Ali S, Ahmad A, Gadgeel S, Sarkar FH. Up-regulation of sonic hedgehog contributes to TGF-beta1-induced epithelial to mesenchymal transition in NSCLC cells. PLoS One. 2011;6(1):e16068.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Bao-Hong Fu
    • 1
  • Zhan-Zhao Fu
    • 1
  • Wei Meng
    • 2
  • Tao Gu
    • 1
  • Xiao-Dong Sun
    • 3
  • Zhi Zhang
    • 3
  1. 1.Department of Oncologythe First Hospital of Qinhuangdao CityQinhuangdaoPeople’s Republic of China
  2. 2.Department of Oncologythe First Affiliated Hospital of Hebei North UniversityZhangjiakouPeople’s Republic of China
  3. 3.Department of Oncologythe Workers Hospital of Tangshan CityTangshanPeople’s Republic of China

Personalised recommendations