Advertisement

Tumor Biology

, Volume 36, Issue 8, pp 6463–6469 | Cite as

Glutathione S-transferase O2 gene rs157077 polymorphism predicts response to transarterial chemoembolization in hepatocellular carcinoma

  • Zhixin Wang
  • Kai Qu
  • Zhichao Huang
  • Xinsen Xu
  • Jingyao Zhang
  • Li Zhang
  • Sinan Liu
  • Hulin Chang
  • Ting Lin
  • Yamin Liu
  • Wenquan Niu
  • Chang Liu
Research Article

Abstract

Some genetic alterations of glutathione S-transferase omega 2 (GSTO2) have been reported to increase the risk of many malignancies, including hepatocellular carcinoma (HCC); however, their prognostic capability remained unresolved in HCC patients treated with transarterial chemoembolization (TACE). To fill this gap, we genotyped three well-defined polymorphisms in GSTO2 to assess whether they can predict overall survival among 228 HCC patients under TACE treatment. The median follow-up time and survival time were 22.0 months (range 3.0–60.0) and 19.2 months, respectively. Only one of three polymorphisms examined, rs157077, was significantly associated with overall survival of TACE-treated HCC (P = 0.003), and its mutant allele conferred a higher risk of death than its wild homozygotes (hazard ratio 1.58, 95 % confidence interval 1.17–2.14). Moreover, carriers of this mutant allele had higher tissue GSTO2 expression, reinforcing the prognostic capability of GSTO2 rs157077 for HCC, especially in combination with age and tumor–node–metastasis (TNM) stage. Taken together, we for the first time provided evidence supporting the prognostic role of GSTO2 in the progression of TACE-treated HCC.

Keywords

Glutathione S-transferase omega Hepatocellular carcinoma Prognosis Transarterial chemoembolization 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 81201549 and 81272644) and the project of Innovative Research Team for Key Science and Technology in Xi’an Jiaotong University (No. 2003KCJ-23).

Conflicts of interest

None

References

  1. 1.
    Jemal A et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Burroughs A, Hochhauser D, Meyer T. Systemic treatment and liver transplantation for hepatocellular carcinoma: two ends of the therapeutic spectrum. Lancet Oncol. 2004;5:409–18.CrossRefPubMedGoogle Scholar
  3. 3.
    Lencioni R, Crocetti L. Local-regional treatment of hepatocellular carcinoma. Radiology. 2012;262:43–58.CrossRefPubMedGoogle Scholar
  4. 4.
    Bruix J, Sherman M, American Association for the Study of Liver, D. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–2.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Llovet JM et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet. 2002;359:1734–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Lo CM et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology. 2002;35:1164–71.CrossRefPubMedGoogle Scholar
  7. 7.
    European Association for Study of, L., European Organisation for, R. & Treatment of, C. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. Eur J Cancer. 2012;48:599–641.CrossRefGoogle Scholar
  8. 8.
    Chung JC et al. Diffusion-weighted magnetic resonance imaging to predict response of hepatocellular carcinoma to chemoembolization. World J Gastroenterol. 2010;16:3161–7.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mannelli L, Kim S, Hajdu CH, Babb JS, Taouli B. Serial diffusion-weighted MRI in patients with hepatocellular carcinoma: prediction and assessment of response to transarterial chemoembolization. Preliminary experience. Eur J Radiol. 2013;82:577–82.CrossRefPubMedGoogle Scholar
  10. 10.
    Cho E et al. Serum insulin-like growth factor-1 predicts disease progression and survival in patients with hepatocellular carcinoma who undergo transarterial chemoembolization. PLoS One. 2014;9:e90862.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zheng YB et al. Prognostic value of serum vascular endothelial growth factor receptor 2 response in patients with hepatocellular carcinoma undergoing transarterial chemoembolization. Med Oncol. 2014;31:843.CrossRefPubMedGoogle Scholar
  12. 12.
    Chasseaud LF. The role of glutathione and glutathione S-transferases in the metabolism of chemical carcinogens and other electrophilic agents. Adv Cancer Res. 1979;29:175–274.CrossRefPubMedGoogle Scholar
  13. 13.
    Lee WH et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci U S A. 1994;91:11733–7.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Niu D, Zhang J, Ren Y, Feng H, Chen WN. HBx genotype D represses GSTP1 expression and increases the oxidative level and apoptosis in HepG2 cells. Mol Oncol. 2009;3:67–76.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang YJ et al. Silencing of glutathione S-transferase P1 by promoter hypermethylation and its relationship to environmental chemical carcinogens in hepatocellular carcinoma. Cancer Lett. 2005;221:135–43.CrossRefPubMedGoogle Scholar
  16. 16.
    Mukherjee B et al. Glutathione S-transferase omega 1 and omega 2 pharmacogenomics. Drug Metab Dispos. 2006;34:1237–46.CrossRefPubMedGoogle Scholar
  17. 17.
    Marahatta SB et al. Polymorphism of glutathione S-transferase omega gene and risk of cancer. Cancer Lett. 2006;236:276–81.CrossRefPubMedGoogle Scholar
  18. 18.
    Masoudi M, Saadat I, Omidvari S, Saadat M. Genetic polymorphisms of GSTO2, GSTM1, and GSTT1 and risk of gastric cancer. Mol Biol Rep. 2009;36:781–4.CrossRefPubMedGoogle Scholar
  19. 19.
    Board PG et al. Identification, characterization, and crystal structure of the omega class glutathione transferases. J Biol Chem. 2000;275:24798–806.CrossRefPubMedGoogle Scholar
  20. 20.
    Whitbread AK et al. Characterization of the omega class of glutathione transferases. Methods Enzymol. 2005;401:78–99.CrossRefPubMedGoogle Scholar
  21. 21.
    Masoudi M, Saadat I, Omidvari S, Saadat M. Association between N142D genetic polymorphism of GSTO2 and susceptibility to colorectal cancer. Mol Biol Rep. 2011;38:4309–13.CrossRefPubMedGoogle Scholar
  22. 22.
    Pongstaporn W et al. Genetic alterations in chromosome 10q24.3 and glutathione S-transferase omega 2 gene polymorphism in ovarian cancer. J Exp Clin Cancer Res. 2006;25:107–14.PubMedGoogle Scholar
  23. 23.
    Pongstaporn W, Pakakasama S, Sanguansin S, Hongeng S, Petmitr S. Polymorphism of glutathione S-transferase omega gene: association with risk of childhood acute lymphoblastic leukemia. J Cancer Res Clin Oncol. 2009;135:673–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Xu YT et al. Genetic polymorphisms in glutathione S-transferase omega (GSTO) and cancer risk: a meta-analysis of 20 studies. Sci Rep. 2014;4:6578.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Allen M et al. Glutathione S-transferase omega genes in Alzheimer and Parkinson disease risk, age-at-diagnosis and brain gene expression: an association study with mechanistic implications. Mol Neurodegener. 2012;7:13.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Giri U, Terry NH, Kala SV, Lieberman MW, Story MD. Elimination of the differential chemoresistance between the murine B-cell lymphoma LY-ar and LY-as cell lines after arsenic (As2O3) exposure via the overexpression of gsto1 (p28). Cancer Chemother Pharmacol. 2005;55:511–21.CrossRefPubMedGoogle Scholar
  27. 27.
    Yan XD, Pan LY, Yuan Y, Lang JH, Mao N. Identification of platinum-resistance associated proteins through proteomic analysis of human ovarian cancer cells and their platinum-resistant sublines. J Proteome Res. 2007;6:772–80.CrossRefPubMedGoogle Scholar
  28. 28.
    Liu L, Zhao L, Zhang Y, Zhang Q, Ding Y. Proteomic analysis of Tiam1-mediated metastasis in colorectal cancer. Cell Biol Int. 2007;31:805–14.CrossRefPubMedGoogle Scholar
  29. 29.
    Xu XS et al. Highlights for alpha-fetoprotein in determining prognosis and treatment monitoring for hepatocellular carcinoma. World J Gastroenterol. 2012;18:7242–50.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    O’Suilleabhain CB et al. Factors predictive of 5-year survival after transarterial chemoembolization for inoperable hepatocellular carcinoma. Br J Surg. 2003;90:325–31.CrossRefPubMedGoogle Scholar
  31. 31.
    Tsai YJ et al. Early identification of poor responders to transarterial chemoembolization for hepatocellular carcinoma. Hepatol Int (2011) (in press).Google Scholar
  32. 32.
    Takayasu K et al. Prospective cohort study of transarterial chemoembolization for unresectable hepatocellular carcinoma in 8510 patients. Gastroenterology. 2006;131:461–9.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Zhixin Wang
    • 1
  • Kai Qu
    • 1
  • Zhichao Huang
    • 1
  • Xinsen Xu
    • 1
  • Jingyao Zhang
    • 1
  • Li Zhang
    • 2
  • Sinan Liu
    • 1
  • Hulin Chang
    • 1
  • Ting Lin
    • 1
  • Yamin Liu
    • 3
  • Wenquan Niu
    • 4
  • Chang Liu
    • 1
  1. 1.Department of Hepatobiliary Surgery, The First Affiliated Hospital of Medical CollegeXi’an Jiaotong UniversityXi’anChina
  2. 2.Department of Ultrasound Diagnostics, Tangdu HospitalThe Fourth Military Medical UniversityXi’anChina
  3. 3.Department of Cardiology and Periphery Vascular Medicine, The First Affiliated Hospital of Medical CollegeXi’an Jiaotong UniversityXi’anChina
  4. 4.State Key Laboratory of Medical Genomics, Ruijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina

Personalised recommendations