Advertisement

Tumor Biology

, Volume 37, Issue 1, pp 847–855 | Cite as

miR-302b suppresses cell invasion and metastasis by directly targeting AKT2 in human hepatocellular carcinoma cells

  • Lumin Wang
  • Jiayi Yao
  • Hongfei Sun
  • Reifang Sun
  • Su’e Chang
  • Yang Yang
  • Tusheng Song
  • Chen Huang
Research Article

Abstract

MicroRNAs (miRNAs) have been shown to play essential roles in regulating the activity of human hepatocellular carcinoma (HCC) cells, thereby contributing to the suppression of invasion and metastasis. In this study, using gain and loss of function assays, we demonstrated that miR-302b was frequently down-regulated in clinical HCC specimens, as compared with 15 corresponding adjacent normal tissues. Overexpression of miR-302b suppressed HCC cell invasion and metastasis. Regulation of NF-κB and matrix metalloproteinase (MMP)-2 expression by miR-302b was mediated via AKT2 in SMMC-7721 cells. Silencing AKT2 produced effects similar to those of miR-302b overexpression, which included inhibiting SMMC-7721 cell invasion and metastasis and dereasing NF-κB and MMP-2 expression. Furthermore, overexpression of AKT2 attenuated the effects of miR-302b overexpression. Taken together, our findings indicate that miR-302b inhibits SMMC-7721 cell invasion and metastasis by targeting AKT2, suggesting that miR-302b might represent a potential therapeutic target for HCC intervention.

Keywords

miR-302b AKT2 Cell invasion Cell metastasis Hepatocellular carcinoma 

Notes

Acknowledgments

This work was funded by The National Natural Science Foundation of China (81402008), The Fundamental Research Funds for the Central Universities (08142006), The National Natural Science Foundation of China (31100921), The National Natural Science Foundation of China (5143827), and The Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT: 1171).

References

  1. 1.
    Siegel R, Naishadham D, Emal A. Cancer statistics. CA Cancer J Clin. 2013;63:11–30.CrossRefPubMedGoogle Scholar
  2. 2.
    Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science. 2005;309:1519–24 3.CrossRefPubMedGoogle Scholar
  3. 3.
    Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA. MicroRNAs—the micro steering wheel of tumour metastases. Nat Rev Cancer. 2009;9:293.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang M, Yang Q, Zhang L, Zhou S, Ye W, Yao Q, et al. miR-302b is a potential molecular marker of esophageal squamous cell carcinoma and functions as a tumor suppressor by targeting ErbB4. J Exp Clin Cancer Res. 2014;33:10.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang L, Yao J, Shi X, Hu L, Li Z, Song T, et al. MicroRNA-302b suppresses cell proliferation by targeting EGFR in human hepatocellular carcinoma SMMC-7721 cells. BMC Cancer. 2013;13:448.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhang Y, Hu H, Song L, Cai L, Wei R, Jin W. Epirubicin-mediated expression of miR-302b is involved in osteosarcoma apoptosis and cell cycle regulation. Toxicol Lett. 2013;222:1–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Su J, Wang Q, Liu Y, Zhong M. miR-217 inhibits invasion of hepatocellular carcinoma cells through direct suppression of E2F3. Mol Cell Biochem. 2014.Google Scholar
  8. 8.
    Xiang Q, Chen W, Ren M, Wang J, Zhang H, Deng DY, et al. Cabozantinib suppresses tumor growth and metastasis in hepatocellular carcinoma by a dual blockade of VEGFR2 and MET. Clin Cancer Res. 2014; 13–2620.Google Scholar
  9. 9.
    Zhu B, Zhang P, Zeng P, Huang Z, Dong TF, Gui YK, et al. Tissue factor pathway inhibitor-2 silencing promotes hepatocellular carcinoma cell invasion in vitro. Anat Rec. 2013;296:1708–16.CrossRefGoogle Scholar
  10. 10.
    Zhang Y, Guo X, Yang M, Yu L, Li Z, Lin N. Identification of AKT kinases as unfavorable prognostic factors for hepatocellular carcinoma by a combination of expression profile, interaction network analysis and clinical validation. Mol BioSyst. 2014;10:215–22.CrossRefPubMedGoogle Scholar
  11. 11.
    Villegas-Comonfort S, Castillo-Sanchez R, Serna-Marquez N, Cortes-Reynosa P, Salazar EP. Arachidonic acid promotes migration and invasion through a PI3K/Akt-dependent pathway in MDA-MB-231 breast cancer cells. Prostaglandins Leukot Essent Fatty Acids. 2014; 01.007Google Scholar
  12. 12.
    Kong X, Chang X, Cheng H, Ma R, Ye X, Cui H. Human epididymis protein 4 inhibits proliferation of human ovarian cancer cells via the mitogen-activated protein kinase and phosphoinositide 3-kinase/AKT pathways. Int J Gynecol Cancer. 2014;24:427–36.CrossRefPubMedGoogle Scholar
  13. 13.
    Wang L, Yao J, Zhang X, Guo B, Le X, Cubberly M, et al. miRNA-302b suppresses human hepatocellular carcinoma by targeting AKT2. Mol Cancer Res. 2014;12:190–202.CrossRefPubMedGoogle Scholar
  14. 14.
    Smith MC, Luker KE, Garbow JR, Prior JL, Jackson E, Piwnica-Worms D, et al. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res. 2004;64:8604–12.CrossRefPubMedGoogle Scholar
  15. 15.
    Wu GG, Li WH, He WG, Jiang N, Zhang GX, Chen W, et al. Mir-184 post-transcriptionally regulates SOX7 expression and promotes cell proliferation in human hepatocellular carcinoma. PLoS ONE. 2014;9:e88796.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Liu Y, Ding Y, Huang J, Wang S, Ni W, Guan J, et al. MiR-141 suppresses the migration and invasion of HCC cells by targeting Tiam1. PLoS ONE. 2014;9:e88393.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Li T, Yin J, Yuan L, Wang S, Yang L, Du X, et al. Downregulation of microRNA-139 is associated with hepatocellular carcinoma risk and short-term survival. Oncol Rep. 2014;31:1699–706.PubMedGoogle Scholar
  18. 18.
    Khalili M, Sadeghizadeh M, Ghorbanian K, Malekzadeh R, Vasei M, Mowla SJ. Down-regulation of miR-302b, an ESC-specific microRNA, in gastric adenocarcinoma. Cell J. 2012;13:251–8.PubMedGoogle Scholar
  19. 19.
    Zhu R, Yang Y, Tian Y, Bai J, Zhang X, Li X, et al. Ascl2 knockdown results in tumor growth arrest by miRNA-302b-related inhibition of colon cancer progenitor cells. PLoS ONE. 2012;7:e32170.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    De Cecco L, Berardi M, Sommariva M, Cataldo A, Canevari S, Mezzanzanica D, et al. Increased sensitivity to chemotherapy induced by CpG-ODN treatment is mediated by microRNA modulation. PLoS ONE. 2013;8:e58849.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610.PubMedGoogle Scholar
  22. 22.
    Qiao J, Lee S, Paul P, Qiao L, Taylor CJ, Schlegel C, et al. Akt2 regulates metastatic potential in neuroblastoma. PLoS ONE. 2013;8:e56382.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Arboleda MJ, Lyons JF, Kabbinavar FF, Bray MR, Snow BE, Ayala R, et al. Overexpression of AKT2/protein kinase Bbeta leads to up-regulation of beta1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. Cancer Res. 2003;63:196–206.PubMedGoogle Scholar
  24. 24.
    Tao ZH, Wan JL, Zeng LY, Xie L, Sun HC, Qin LX, et al. miR-612 suppresses the invasive-metastatic cascade in hepatocellular carcinoma. J Exp Med. 2013;210:789–803.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Goncalves V, Henriques A, Pereira J, Neves Costa A, Moyer MP, Moita LF. Phosphorylation of SRSF1 by SRPK1 regulates alternative splicing of tumor-related Rac1b in colorectal cells. RNA. 2014;20:474–82.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Dobashi Y, Sato E, Oda Y, Inazawa J, Ooi A. Significance of Akt activation and AKT gene increases in soft tissue tumors. Hum Pathol. 2014;45:127–36.CrossRefPubMedGoogle Scholar
  27. 27.
    Romashkova JA, Makarov SS. NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature. 1999;401:86–90.CrossRefPubMedGoogle Scholar
  28. 28.
    Jiang L, Lin C, Song L, Wu J, Chen B, Ying Z, et al. MicroRNA-30e* promotes human glioma cell invasiveness in an orthotopic xenotransplantation model by disrupting the NF-kappaB/IkappaBalpha negative feedback loop. J Clin Invest. 2012;122:33–47.CrossRefPubMedGoogle Scholar
  29. 29.
    Li J, Gong LY, Song LB, Jiang LL, Liu LP, Wu J, et al. Oncoprotein Bmi-1 renders apoptotic resistance to glioma cells through activation of the IKK-nuclear factor-kappaB pathway. Am J Pathol. 2010;176:699–709.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Naugler WE, Karin M. NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev. 2008;18:19–26.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mentlein R, Forstreuter F, Mehdorn HM, Held-Feindt J. Functional significance of vascular endothelial growth factor receptor expression on human glioma cells. J Neuro-Oncol. 2004;67:9–18.CrossRefGoogle Scholar
  32. 32.
    Wang Y, Lin Z, Sun L, Fan S, Huang Z, Zhang D, et al. Akt/Ezrin Tyr353/NF-kappaB pathway regulates EGF-induced EMT and metastasis in tongue squamous cell carcinoma. Br J Cancer. 2014;110:695–705.CrossRefPubMedGoogle Scholar
  33. 33.
    Yang TQ, Lu XJ, Wu TF, Ding DD, Zhao ZH, Chen GL, et al. MicroRNA-16 inhibits glioma cell growth and invasion through suppression of BCL2 and the nuclear factor-kappaB1/MMP9 signaling pathway. Cancer Sci. 2014;105:265–71.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Lumin Wang
    • 1
  • Jiayi Yao
    • 1
  • Hongfei Sun
    • 1
  • Reifang Sun
    • 1
  • Su’e Chang
    • 1
  • Yang Yang
    • 1
  • Tusheng Song
    • 1
  • Chen Huang
    • 1
    • 2
    • 3
  1. 1.Department of Genetics and Molecular BiologyXi’an Jiaotong University Health Science CenterXi’anChina
  2. 2.Key Laboratory of Environment and Genes Related to DiseasesXi’an Jiaotong University Health Science CenterXi’anChina
  3. 3.Cardiovascular Research CenterXi’an Jiaotong University Health Science CenterXi’anPeople’s Republic of China

Personalised recommendations