Tumor Biology

, Volume 36, Issue 8, pp 6369–6374 | Cite as

Association of TP53 gene polymorphisms with susceptibility of bladder cancer in Bangladeshi population

  • Md. Bayejid Hosen
  • Md. Abdus Salam
  • Md. Fakhrul Islam
  • Ashfaque Hossain
  • M Zakir Hossain Hawlader
  • Yearul Kabir
Research Article


TP53 is considered to be the most frequently mutated gene in every forms of human cancer. The objective of this study was to evaluate the association of TP53 codon 72 and 248 polymorphisms with the susceptibility and severity of bladder cancer in Bangladeshi population. A case-control study on 102 bladder cancer patients and 140 control subjects was conducted. The genotype analysis was done by polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) method. The patients with Pro/Pro genotypes at 72 position were at high risk (odds ratio (OR) = 3.02; 95 % confidence interval (95 % CI) = 1.42 to 6.40) of developing bladder cancer. The cigarette smokers with Pro/Pro genotypes at 72 position were found to have a 3.91-fold increased risk to develop bladder cancer (OR = 3.91; 95 % CI = 1.33 to 11.5). There was no significant association of codon 248 polymorphisms with bladder cancer in the study population. Taken together, these findings indicate an association between p53 codon72 polymorphism and bladder cancer risk in Bangladeshi population.


Bladder cancer Genomic DNA Polymorphism Smoking Susceptibility 



The authors acknowledge the financial support provided by Bangladesh Medical Research Council (BMRC), Bangladesh. Thanks to the study subjects for their participation in this study.

Conflicts of interest



  1. 1.
    Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nat Rev Cancer. 2002;2:331–41.CrossRefPubMedGoogle Scholar
  2. 2.
    Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25:2097–116.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, et al. The diploid genome sequence of an individual human. PLoS Biol. 2007;5:e254. doi: 10.1371/journal.pbio.0050254.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Shastry B. SNP alleles in human disease and evolution. J Hum Genet. 2002;47:561–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences and clinical use. Cold Spring Harbor Prospect Biol. 2010;2(1):a001008. doi: 10.1101/cshperspect.a001008.Google Scholar
  6. 6.
    Naccarati A, Polakova V, Pardini B, Vodickova L, Hemminki K, Kumar R, et al. Mutations and polymorphisms in tp53 gene—an overview on the role in colorectal cancer. Mutagenesis. 2012;27:211–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Duffy MJ, Synnott NC, McGowan PM, Crown J, O’Connor D, Gallagher WM. p53 as a target for the treatment of cancer. Cancer Treat Rev. 2014;40:1153–60.CrossRefPubMedGoogle Scholar
  8. 8.
    Whibley C, Pharoah PD, Hollstein M. p53 polymorphisms: cancer implications. Nat Rev Cancer. 2009;9:95–107.CrossRefPubMedGoogle Scholar
  9. 9.
    Anastasiadis A, Reijke TME. Best practice in the treatment of non-muscle invasive bladder cancer. Ther Adv Urol. 2012;4:13–32.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Xu T, Xu ZC, Zou Q, Yu B, Huang XE. P53 Arg72Pro polymorphism and bladder cancer risk—meta-analysis evidence for a link in Asians but not Caucasians. Asian Pac J Cancer Prev. 2011;13:2349–54.CrossRefGoogle Scholar
  11. 11.
    Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.CrossRefPubMedGoogle Scholar
  12. 12.
    Franekova M, Halasova E, Bukovska E, Luptak J, Dobrota D. Gene polymorphisms in bladder cancer. Urol Oncol. 2008;l26:1–8.CrossRefGoogle Scholar
  13. 13.
    Mabrouk I, Baccouche S, El-Abed R, Mokdad-Gargouri R, Mosbah A, Saïd S, et al. No evidence of correlation between p53 codon 72 polymorphism and risk of bladder or breast carcinoma in Tunisian patients. Ann N Y Acad Sci. 2003;1010:764–70.CrossRefPubMedGoogle Scholar
  14. 14.
    Soulitzis N, Sourvinos G, Dokianakis DN, Spandidos DA. p53 codon 72 polymorphism and its association with bladder cancer. Cancer Lett. 2002;179:175–83.CrossRefPubMedGoogle Scholar
  15. 15.
    Furihata M, Kurabayashl A, Matsumoto M, Sonobe H, Ohtsuki Y, Terao N, et al. Frequent phosphorylation at serine 392 in overexpressed p53 protein due to missense mutation in carcinoma of the urinary tract. J Pathol. 2002;197:82–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Smith ND, Rubenstein JN, Eggener SE, Kozlowski JM. The p53 tumor suppressor gene and nuclear protein: basic science review and relevance in the management of bladder cancer. J Urol. 2003;169:1219–28.CrossRefPubMedGoogle Scholar
  17. 17.
    Van-Oijen MGCT, Slootweg PJ. Gain-of-function mutations in the tumor suppressor gene p53. Clin Cancer Res. 2000;6:2138–45.PubMedGoogle Scholar
  18. 18.
    Jaiswal PK, Apul G, Mittal RD. Association of p53 codon 248 (exon 7) with urinary bladder cancer risk in the North Indian population. Biosci Trends. 2011;5:205–10.CrossRefPubMedGoogle Scholar
  19. 19.
    Inatomi H, Katoh T, Kawamoto T, Matsumoto T. NAT2 gene polymorphism as a possible marker for susceptibility to bladder cancer in Japanese. Int J Urol. 1999;6:446–54.CrossRefPubMedGoogle Scholar
  20. 20.
    World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Adopted by the 18th WMA General Assembly, Helsinki, Finland, June 1964, and amended by the 64th WMA General Assembly, Fortaleza, Brazil, October 2013. http://www.wma.net/en/30publications/10policies/b3/index.html. Accessed 17 Oct 2014
  21. 21.
    Hosen MB, Islam J, Salam MA, Islam MF, Hawlader MZH, Kabir Y. N-acetyltransferase 2 gene polymorphism as a biomarker for susceptibility to bladder cancer in Bangladeshi population. Asia-Pac J Clin Oncol. 2014. doi: 10.111/ajco.12291.PubMedGoogle Scholar
  22. 22.
    Islam MS, Ahmed MU, Sayeed MSB, Maruf AA, Mostofa AGM, Hussain SMA, et al. Lung cancer risk in relation to nicotinic acetylcholine receptor, CYP2A6 and CYP1A1 genotypes in the Bangladeshi population. Clin Chim Acta. 2013;416:11–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Hsieh YY, Lin CS. p53 codon 11, 72 and 248 gene polymorphisms in endometriosis. Int J Biol Sci. 2006;2:188–93.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhang R, Chen W, Zhang W, Jiang Q, Liu C, Lin Y, et al. Genetic polymorphisms of p53 codon 72 and bladder cancer susceptibility: a hospital-based case–control study. Genet Test Mol Biomarkers. 2011;15:337–41.CrossRefPubMedGoogle Scholar
  25. 25.
    Xu T, Xu ZC, Zou Q, Yu B, Huang XE. P53 Arg72Pro polymorphism and bladder cancer risk—meta-analysis evidence for a link in Asians but not Caucasians. Asian Pac J Cancer Prev. 2012;13:2349–54.CrossRefPubMedGoogle Scholar
  26. 26.
    Lin HY, Huang CH, Yu TJ, Wu WJ, Yang MC, Lung FW. p53 codon 72 polymorphism as a progression index for bladder cancer. Oncol Rep. 2012;27:1193–9.PubMedGoogle Scholar
  27. 27.
    Siddique M, Sabapathy K. Trp53-dependent DNA-repair is affected by the codon 72 polymorphism. Oncogene. 2006;25:3489–500.CrossRefPubMedGoogle Scholar
  28. 28.
    Pashos CL, Botteman MF, Laskin BL, Redaelli A. Bladder cancer: epidemiology, diagnosis, and management. Cancer Pract. 2002;10:311–22.CrossRefPubMedGoogle Scholar
  29. 29.
    Zeegers MP, Kellen E, Buntinx F, van den Brandt PA. The association between smoking, beverage consumption, diet and bladder cancer: a systematic literature review. World J Urol. 2004;21:392–401.CrossRefPubMedGoogle Scholar
  30. 30.
    Probst-Hensch NM, Bell DA, Watson MA, Skipper PL, Tannenbaum SR, Chan KK, et al. N-acetyltransferase 2 phenotype but not NAT1*10 genotype affects aminobiphenyl-hemoglobin adduct levels. Cancer Epidemiol Biomarkers Prev. 2000;9:619–23.PubMedGoogle Scholar
  31. 31.
    Manolio TA, Brooks LD, Collins FS. A HapMap harvest of insights into the genetics of common disease. J Clin Invest. 2008;118:1590–605.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rahim NG, Harismendy O, Topol EJ, Frazer KA. Genetic determinants of phenotypic diversity in humans. Genome Biol. 2008;9:215. doi: 10.1186/gb-2008-9-4-215.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Dumont P, Leu JI, Della Pietra 3rd AC, George DL, Murphy M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet. 2003;33:357–65.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhu F, Dolle ME, Berton TR, Kuiper RV, Capps C, Espejo A, et al. Mouse models for the p53 R72P polymorphism mimic human phenotypes. Cancer Res. 2010;70:5851–9.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Frank AK, Leu JI, Zhou Y, Devarajan K, Nedelko T, Klein-Szanto A, et al. The codon 72 polymorphism of p53 regulates interaction with NF-{kappa}b and transactivation of genes involved in immunity and inflammation. Mol Cell Biol. 2011;31:1201–13.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Md. Bayejid Hosen
    • 1
  • Md. Abdus Salam
    • 2
  • Md. Fakhrul Islam
    • 3
  • Ashfaque Hossain
    • 4
    • 5
  • M Zakir Hossain Hawlader
    • 1
  • Yearul Kabir
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of DhakaDhakaBangladesh
  2. 2.Department of UrologyNational Institute of Kidney Diseases and UrologyDhakaBangladesh
  3. 3.Department of UrologyBangladesh Medical College and HospitalDhakaBangladesh
  4. 4.College of MedicineUniversity of HailHailSaudi Arabia
  5. 5.Molecular Diagnostics and Personalized Therapeutic UnitUniversity of HailHailSaudi Arabia

Personalised recommendations