Tumor Biology

, Volume 36, Issue 8, pp 6201–6209 | Cite as

MicroRNA-26b inhibits metastasis of osteosarcoma via targeting CTGF and Smad1

  • Guoqing Duan
  • Chunfeng Ren
  • Yuanmin Zhang
  • Shiqing Feng
Research Article


Downregulation of miR-26b has been found in various cancers, but it has never been investigated in osteosarcoma. In this study, we demonstrated downregulation of miR-26b in osteosarcoma tissues, negatively correlated with the expression of connective tissue growth factor (CTGF) and Smad1. Luciferase reporter assay confirmed the interaction of miR-26b with the 3′ untranslated regions (UTRs) of CTGF and Smad1. Transfection of miR-26b in osteosarcoma cells suppressed the expression of CTGF and Smad1, suggesting CTGF and Smad1 as direct targets of miR-26b. Overexpression of miR-26b inhibited the migration of osteosarcoma cells, which was reversed by overexpression of CTGF or Smad1. Knockdown of CTGF by small interfering RNA (siRNA) interference blocked the activation of Smad1, ERK1/2, and MMP2, which was opposite to the overexpression of CTGF. Differently, Smad1 did not significantly affect CTGF level, but mediated ERK1/2 phosphorylation and MMP2 activation. Furthermore, miR-26b inhibited lung metastasis of osteosarcoma in vivo. Our data indicated that downregulation of miR-26b in osteosarcoma elevated the levels of CTGF and Smad1, facilitating osteosarcoma metastasis.


Osteosarcoma MicroRNA CTGF Smad1 MMP2 Metastasis 



This study was supported by grants from the Medical Science and Technology Development Program of Jining (2013JNNK23) and Shandong Provincial Science and Technology Development Project (2013ws0339).

Conflicts of interest



  1. 1.
    Link MP. Osteosarcoma in adolescents and young adults: new developments and controversies. Commentary on the use of presurgical chemotherapy. Cancer Treat Res. 1993;62:383–5.CrossRefPubMedGoogle Scholar
  2. 2.
    Liu Y, Zhao L, Ju Y, Li W, Zhang M, Jiao Y, et al. A novel androstenedione derivative induces ROS-mediated autophagy and attenuates drug resistance in osteosarcoma by inhibiting macrophage migration inhibitory factor (MIF). Cell Death Dis. 2014;5:e1361.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bielack SS, Kempf-Bielack B, Branscheid D, Carrle D, Friedel G, Helmke K, et al. Second and subsequent recurrences of osteosarcoma: presentation, treatment, and outcomes of 249 consecutive cooperative osteosarcoma study group patients. J Clin Oncol. 2009;27:557–65.CrossRefPubMedGoogle Scholar
  4. 4.
    Lin CH, Ji T, Chen CF, Hoang BH. Wnt signaling in osteosarcoma. Adv Exp Med Biol. 2014;804:33–45.CrossRefPubMedGoogle Scholar
  5. 5.
    Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet. 2005;37:766–70.CrossRefPubMedGoogle Scholar
  6. 6.
    Liang W, Gao B, Fu P, Xu S, Qian Y, Fu Q. The miRNAs in the pathogenesis of osteosarcoma. Front Biosci (Landmark Ed). 2013;18:788–94.CrossRefGoogle Scholar
  7. 7.
    Osaki M, Takeshita F, Sugimoto Y, Kosaka N, Yamamoto Y, Yoshioka Y, et al. MicroRNA-143 regulated human osteosarcoma metastasis by regulating matrix metalloprotease-13 expression. Mol Ther. 2011;19:1123–30.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lv L, Deng H, Li Y, Zhang C, Liu X, Liu Q, et al. The DNA methylation-regulated miR-193a-3p dictates the multi-chemoresistance of bladder cancer via repression of SRSF2/PLAU/HIC2 expression. Cell Death Dis. 2014;5:e1402.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103:2257–61.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ji F, Zhang H, Wang Y, Li M, Xu W, Kang Y, et al. MicroRNA-133a, downregulated in osteosarcoma, suppresses proliferation and promotes apoptosis by targeting Bcl-xL and Mcl-1. Bone. 2013;56:220–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Xu M, Jin H, Xu CX, Sun B, Song ZG, Bi WZ, et al. miR-382 inhibits osteosarcoma metastasis and relapse by targeting Y box-binding protein 1. Mol Ther. 2015;23:89–98.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhu J, Feng Y, Ke Z, Yang Z, Zhou J, Huang X, et al. Down-regulation of miR-183 promotes migration and invasion of osteosarcoma by targeting Ezrin. Am J Pathol. 2012;180:2440–51.CrossRefPubMedGoogle Scholar
  14. 14.
    Jones KB, Salah Z, Del Mare S, Galasso M, Gaudio E, Nuovo GJ, et al. miRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Res. 2012;72:1865–77.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gao Y, Luo LH, Li S, Yang C. miR-17 inhibitor suppressed osteosarcoma tumor growth and metastasis via increasing PTEN expression. Biochem Biophys Res Commun. 2014;444:230–4.CrossRefPubMedGoogle Scholar
  16. 16.
    Yan K, Gao J, Yang T, Ma Q, Qiu X, Fan Q, et al. MicroRNA-34a inhibits the proliferation and metastasis of osteosarcoma cells both in vitro and in vivo. PLoS One. 2012;7:e33778.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Verghese ET, Drury R, Green CA, Holliday DL, Lu X, Nash C, et al. MiR-26b is down-regulated in carcinoma-associated fibroblasts from ER-positive breast cancers leading to enhanced cell migration and invasion. J Pathol. 2013;231:388–99.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zhao N, Wang R, Zhou L, Zhu Y, Gong J, Zhuang SM. MicroRNA-26b suppresses the NF-κB signaling and enhances the chemosensitivity of hepatocellular carcinoma cells by targeting TAK1 and TAB3. Mol Cancer. 2014;13:35.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Palumbo T, Faucz FR, Azevedo M, Xekouki P, Iliopoulos D, Stratakis CA. Functional screen analysis reveals miR-26b and miR-128 as central regulators of pituitary somatomammotrophic tumor growth through activation of the PTEN-AKT pathway. Oncogene. 2013;32:1651–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Zou J, Xu L, Ju Y, Zhang P, Wang Y, Zhang B. Cholesterol depletion induces ANTXR2-dependent activation of MMP-2 via ERK1/2 phosphorylation in neuroglioma U251 cell. Biochem Biophys Res Commun. 2014;452:186–90.CrossRefPubMedGoogle Scholar
  21. 21.
    Liu J, Xian G, Li M, Zhang Y, Yang M, Yu Y, et al. Cholesterol oxidase from Bordetella species promotes irreversible cell apoptosis in lung adenocarcinoma by cholesterol oxidation. Cell Death Dis. 2014;5:e1372.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tan S, Ding K, Li R, Zhang W, Li G, Kong X, et al. Identification of miR-26 as a key mediator of estrogen stimulated cell proliferation by targeting CHD1, GREB1 and KPNA2. Breast Cancer Res. 2014;16:R40.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Li J, Li X, Kong X, Luo Q, Zhang J, Fang L. MiRNA-26b inhibits cellular proliferation by targeting CDK8 in breast cancer. Int J Clin Exp Med. 2014;7:558–65.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Shen G, Lin Y, Yang X, Zhang J, Xu Z, Jia H. MicroRNA-26b inhibits epithelial-mesenchymal transition in hepatocellular carcinoma by targeting USP9X. BMC Cancer. 2014;14:393.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Liu XX, Li XJ, Zhang B, Liang YJ, Zhou CX, Cao DX, et al. MicroRNA-26b is underexpressed in human breast cancer and induces cell apoptosis by targeting SLC7A11. FEBS Lett. 2011;585:1363–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Wu N, Zhao X, Liu M, Liu H, Yao W, Zhang Y, et al. Role of microRNA-26b in glioma development and its mediated regulation on EphA2. PLoS One. 2011;6:e16264.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ma YL, Zhang P, Wang F, Moyer MP, Yang JJ, Liu ZH, et al. Human embryonic stem cells and metastatic colorectal cancer cells shared the common endogenous human microRNA-26b. J Cell Mol Med. 2011;15:1941–54.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med. 2009;361:1437–47.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ji Y, He Y, Liu L, Zhong X. MiRNA-26b regulates the expression of cyclooxygenase-2 in desferrioxamine-treated CNE cells. FEBS Lett. 2010;584:961–7.CrossRefPubMedGoogle Scholar
  30. 30.
    Liu SC, Chuang SM, Hsu CJ, Tsai CH, Wang SW, Tang CH. CTGF increases vascular endothelial growth factor-dependent angiogenesis in human synovial fibroblasts by increasing miR-210 expression. Cell Death Dis. 2014;5:e1485.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Leask A, Abraham DJ. All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci. 2006;119:4803–10.CrossRefPubMedGoogle Scholar
  32. 32.
    Leask A, Denton CP, Abraham DJ. Insights into the molecular mechanism of chronic fibrosis: the role of connective tissue growth factor in scleroderma. J Invest Dermatol. 2004;122:1–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Dhar A, Ray A. The CCN family proteins in carcinogenesis. Exp Oncol. 2010;32:2–9.PubMedGoogle Scholar
  34. 34.
    Tsai HC, Su HL, Huang CY, Fong YC, Hsu CJ, Tang CH. CTGF increases matrix metalloproteinases expression and subsequently promotes tumor metastasis in human osteosarcoma through down-regulating miR-519d. Oncotarget. 2014;5:3800–12.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Nakerakanti SS, Bujor AM, Trojanowska M. CCN2 is required for the TGF-β induced activation of Smad1-Erk1/2 signaling network. PLoS One. 2011;6:e21911.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Urtasun R, Latasa MU, Demartis MI, Balzani S, Goñi S, Garcia-Irigoyen O, et al. Connective tissue growth factor autocriny in human hepatocellular carcinoma: oncogenic role and regulation by epidermal growth factor receptor/yes-associated protein-mediated activation. Hepatology. 2011;54:2149–58.CrossRefPubMedGoogle Scholar
  37. 37.
    Katsuno Y, Hanyu A, Kanda H, Ishikawa Y, Akiyama F, Iwase T, et al. Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway. Oncogene. 2008;27:6322–33.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Guoqing Duan
    • 1
    • 2
  • Chunfeng Ren
    • 3
  • Yuanmin Zhang
    • 2
  • Shiqing Feng
    • 1
  1. 1.Department of OrthopedicsTianjin Medical University General HospitalTianjinPeople’s Republic of China
  2. 2.Department of Joint and Sports MedicineAffiliated Hospital of Jining Medical CollegeJiningPeople’s Republic of China
  3. 3.Department of RheumatologyJining First People’s HospitalJiningPeople’s Republic of China

Personalised recommendations