Advertisement

Tumor Biology

, Volume 36, Issue 4, pp 2223–2227 | Cite as

Role of Yes-associated protein 1 in gliomas: pathologic and therapeutic aspects

Review

Abstract

The activation of proline-rich phosphoprotein Yes-associated protein 1 (YAP1) possesses a possible link between stem/progenitor cells, organ size, and cancer. YAP1 has been indicated as an oncoprotein, and overexpression of YAP1 is reported in many human brain tumors, including infiltrating gliomas. During normal brain development, the neurofibromatosis 2 (NF2) protein suppresses YAP1 activity in neural progenitor cells to promote guidepost cell differentiation, but loss of NF2 causes elevating YAP1 activity in midline neural progenitors, which disrupts guidepost formation. Overexpression of endogenous CD44 (cancer stem cell marker) promotes phosphorylation/inactivation of NF2, and upregulates YAP1 expression and leads to cancer cell resistance in glioblastoma. The hippo pathway is also related to the YAP1 action. However, the mechanism of YAP1 action in glioma is still far from clear understanding. Advances in clinical management based on an improved understanding of the function of YAP1 may help to serve as a molecular target in glioma therapeutics. Knockdown of YAP1 by shRNA technology has been shown to reduce glioma in vitro; however, clinical implications are still under investigation. YAP1 can be used as a diagnostic marker for gliomas to monitor the disease status and may help to evaluate its treatment effects. More functional experiments are needed to support the direct roles of YAP1 on gliomas at molecular and cellular levels.

Keywords

Yes-associated protein 1 Glioma Neurofibromatosis 2 Cancer marker Glioma therapeutics 

Notes

Conflicts of interest

None

References

  1. 1.
    Sudol M. Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene. 1994;9:2145–52.PubMedGoogle Scholar
  2. 2.
    Sudol M, Bork P, Einbond A, Kastury K, Druck T, Negrini M, et al. Characterization of the mammalian YAP (Yes-associated protein) gene and its role in defining a novel protein module, the WW domain. J Biol Chem. 1995;270:14733–41.CrossRefPubMedGoogle Scholar
  3. 3.
    Komuro A, Nagai M, Navin NE, Sudol M. WW domain-containing protein YAP associates with ErbB-4 and acts as a co-transcriptional activator for the carboxyl-terminal fragment of ErbB-4 that translocates to the nucleus. J Biol Chem. 2003;278:33334–41.CrossRefPubMedGoogle Scholar
  4. 4.
    Espanel X, Sudol M. Yes-associated protein and p53-binding protein-2 interact through their WW and SH3 domains. J Biol Chem. 2001;276:14514–23.PubMedGoogle Scholar
  5. 5.
    Iwasa H, Maimaiti S, Kuroyanagi H, Kawano S, Inami K, Timalsina S, et al. Yes-associated protein homolog, YAP-1, is involved in the thermotolerance and aging in the nematode Caenorhabditis elegans. Exp Cell Res. 2013;319:931–45.CrossRefPubMedGoogle Scholar
  6. 6.
    Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q, et al. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev. 2011;25:51–63.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhao B, Ye X, Yu J, Li L, Li W, Li S, et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 2008;22:1962–71.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol. 2007;17:2054–60.CrossRefPubMedGoogle Scholar
  9. 9.
    Pan D. The Hippo signaling pathway in development and cancer. Dev Cell. 2010;19:491–505.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dong J, Feldmann G, Huang J, Wu S, Zhang N, Comerford SA, et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell. 2007;130:1120–33.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lau YK, Murray LB, Houshmandi SS, Xu Y, Gutmann DH, Yu Q. Merlin is a potent inhibitor of glioma growth. Cancer Res. 2008;68:5733–42.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Goodenberger ML, Jenkins RB. Genetics of adult glioma. Cancer Genet. 2012;205:613–21.CrossRefPubMedGoogle Scholar
  13. 13.
    Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev. 2001;15:1311–33.CrossRefPubMedGoogle Scholar
  14. 14.
    Bleeker FE, Molenaar RJ, Leenstra S. Recent advances in the molecular understanding of glioblastoma. J Neuro-Oncol. 2012;108:11–27.CrossRefGoogle Scholar
  15. 15.
    Reuss D, von Deimling A. Hereditary tumor syndromes and gliomas. Recent Results Cancer Res. 2009;171:83–102.CrossRefPubMedGoogle Scholar
  16. 16.
    Adel Fahmideh M, Schwartzbaum J, Frumento P, Feychting M. Association between DNA repair gene polymorphisms and risk of glioma: a systematic review and meta-analysis. Neuro-Oncol. 2014;16:807–14.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Steinhardt AA, Gayyed MF, Klein AP, Dong J, Maitra A, Pan D, et al. Expression of Yes-associated protein in common solid tumors. Hum Pathol. 2008;39:1582–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cao JJ, Zhao XM, Wang DL, Chen KH, Sheng X, Li WB, et al. YAP is overexpressed in clear cell renal cell carcinoma and its knockdown reduces cell proliferation and induces cell cycle arrest and apoptosis. Oncol Rep. 2014;32:1594–600.PubMedGoogle Scholar
  19. 19.
    Xu MZ, Yao TJ, Lee NP, Ng IO, Chan YT, Zender L, et al. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer. 2009;115:4576–85.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, et al. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci U S A. 2006;103:12405–10.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21:2747–61.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Orr BA, Bai H, Odia Y, Jain D, Anders RA, Eberhart CG. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth. J Neuropathol Exp Neurol. 2011;70:568–77.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Li SY, Hu JA, Wang HM. Expression of Yes-associated protein 1 gene and protein in oral squamous cell carcinoma. Chin Med J (Engl). 2013;126:655–8.Google Scholar
  24. 24.
    Fernandez-L A, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, et al. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev. 2009;23:2729–41.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Baia GS, Caballero OL, Orr BA, Lal A, Ho JS, Cowdrey C, et al. Yes-associated protein 1 is activated and functions as an oncogene in meningiomas. Mol Cancer Res. 2012;10:904–13.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Modena P, Lualdi E, Facchinetti F, Veltman J, Reid JF, Minardi S, et al. Identification of tumor-specific molecular signatures in intracranial ependymoma and association with clinical characteristics. J Clin Oncol. 2006;24:5223–33.CrossRefPubMedGoogle Scholar
  27. 27.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhao B, Li L, Lei Q, Guan KL. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev. 2010;24:862–74.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zeng Q, Hong W. The emerging role of the Hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell. 2008;13:188–92.CrossRefPubMedGoogle Scholar
  30. 30.
    Huang J, Wu S, Barrera J, Matthews K, Pan D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell. 2005;122:421–34.CrossRefPubMedGoogle Scholar
  31. 31.
    Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57.CrossRefPubMedGoogle Scholar
  32. 32.
    Nishio M, Otsubo K, Maehama T, Mimori K, Suzuki A. Capturing the mammalian Hippo: elucidating its role in cancer. Cancer Sci. 2013;104:1271–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Hong W, Guan KL. The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Semin Cell Dev Biol. 2012;23:785–93.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang W, Huang J, Chen J. Angiomotin-like proteins associate with and negatively regulate YAP1. J Biol Chem. 2011;286:4364–70.CrossRefPubMedGoogle Scholar
  35. 35.
    Chan SW, Lim CJ, Chong YF, Pobbati AV, Huang C, Hong W. Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J Biol Chem. 2011;286:7018–26.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF (beta-TRCP). Genes Dev. 2010;24:72–85.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev. 2014;94:1287–312.CrossRefPubMedGoogle Scholar
  38. 38.
    Lei QY, Zhang H, Zhao B, Zha ZY, Bai F, Pei XH, et al. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the Hippo pathway. Mol Cell Biol. 2008;28:2426–36.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhang X, Milton CC, Humbert PO, Harvey KF. Transcriptional output of the Salvador/Warts/Hippo pathway is controlled in distinct fashions in Drosophila melanogaster and mammalian cell lines. Cancer Res. 2009;69:6033–41.CrossRefPubMedGoogle Scholar
  40. 40.
    Alonso ME, Bello MJ, Arjona D, Gonzalez-Gomez P, Lomas J, de Campos JM, et al. Analysis of the NF2 gene in oligodendrogliomas and ependymomas. Cancer Genet Cytogenet. 2002;134:1–5.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang N, Bai H, David KK, Dong J, Zheng Y, Cai J, et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev Cell. 2010;19:27–38.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Striedinger K, VandenBerg SR, Baia GS, McDermott MW, Gutmann DH, Lal A. The neurofibromatosis 2 tumor suppressor gene product, merlin, regulates human meningioma cell growth by signaling through YAP. Neoplasia. 2008;10:1204–12.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lavado A, Ware M, Paré J, Cao X. The tumor suppressor Nf2 regulates corpus callosum development by inhibiting the transcriptional coactivator Yap. Development. 2014;141:4182–93.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Xu Y, Stamenkovic I, Yu Q. CD44 attenuates activation of the Hippo signaling pathway and is a prime therapeutic target for glioblastoma. Cancer Res. 2010;70:2455–64.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Jiang Z, Li X, Hu J, Zhou W, Jiang Y, Li G, et al. Promoter hypermethylation-mediated down-regulation of LATS1 and LATS2 in human astrocytoma. Neurosci Res. 2006;56:450–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.CrossRefGoogle Scholar
  47. 47.
    Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Frattini V, Trifonov V, Chan JM, Castano A, Lia M, Abate F, et al. The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet. 2013;45:1141–9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Dixit D, Ghildiyal R, Anto NP, Sen E. Chaetocin-induced ROS-mediated apoptosis involves ATM-YAP1 axis and JNK-dependent inhibition of glucose metabolism. Cell Death Dis. 2014;5:e1212.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Okazaki T, Kageji T, Kuwayama K, Kitazato KT, Mure H, Hara K, et al. Up-regulation of endogenous PML induced by a combination of interferon-beta and temozolomide enhances p73/YAP-mediated apoptosis in glioblastoma. Cancer Lett. 2012;323:199–207.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Fourth Department of NeurosurgeryCangzhou Central HospitalCangzhouChina

Personalised recommendations