Tumor Biology

, Volume 36, Issue 8, pp 6125–6131 | Cite as

Nuclear shape descriptors by automated morphometry may distinguish aggressive variants of squamous cell carcinoma from relatively benign skin proliferative lesions: a pilot study

  • Weixi Yang
  • Rong Tian
  • Tongqing Xue
Research Article


We evaluated whether degrees of dysplasia may be consistently accessed in an automatic fashion, using different kinds of non-melanoma skin cancer (NMSC) as a validatory model. Namely, we compared Bowen disease, actinic keratosis, basal cell carcinoma, low-grade squamous cell carcinoma, and invasive squamous cell carcinoma. We hypothesized that characterizing the shape of nuclei may be important to consistently diagnose the aggressiveness of a skin tumor. While basal cell carcinoma is comparatively relatively benign, management of squamous cell carcinoma is controversial because of its potential to recur and intraoperative dilemma regarding choice of the margin or the depth for the excision. We provide evidence here that progressive nuclear dysplasia may be automatically estimated through the thresholded images of skin cancer and quantitative parameters estimated to provide a quasi-quantitative data, which can thenceforth guide the management of the particular cancer. For circularity, averaging more than 2500 nuclei in each group estimated the means ± SD as 0.8 ± 0.007 vs. 0.78 ± 0.0063 vs. 0.42 ± 0.014 vs. 0.63 ± 0.02 vs. 0.51 ± 0.02 (F = 318063.56, p < 0.0001, one-way analyses of variance). The mean aspect ratios were (means ± SD) 0.97 ± 0.0014 vs. 0.95 ± 0.002 vs. 0.38 ± 0.018 vs. 0.84 ± 0.0035 vs. 0.74 ± 0.019 (F = 1022631.931, p < 0.0001, one-way analyses of variance). The Feret diameters averaged over 2500 nuclei in each group were the following: 1 ± 0.0001 vs. 0.9 ± 0.002 vs. 5 ± 0.031 vs. 1.5 ± 0.01 vs. 1.9 ± 0.004 (F = 33105614.194, p < 0.0001, one-way analyses of variance). Multivariate analyses of composite parameters potentially detect aggressive variants of squamous cell carcinoma as the most dysplastic form, in comparison to locally occurring squamous cell carcinoma and basal cell carcinoma, or benign skin lesions.


Nuclear shape Aspect ratio Circularity Skin cancer Metastasis 


Conflicts of interest



  1. 1.
    Spasić I, Livsey J, Keane JA, Nenadić G. Text mining of cancer-related information: review of current status and future directions. Int J Med Inform. 2014;83:605–23.CrossRefPubMedGoogle Scholar
  2. 2.
    Irshad H, Veillard A, Roux L, Racoceanu D. Methods for nuclei detection, segmentation, and classification in digital histopathology: a review-current status and future potential. IEEE Rev Biomed Eng. 2014;7:97–114.CrossRefPubMedGoogle Scholar
  3. 3.
    Pantanowitz L, Valenstein PN, Evans AJ, Kaplan KJ, Pfeifer JD, Wilbur DC, et al. Review of the current state of whole slide imaging in pathology. J Pathol Inform. 2011;2:36.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Al-Janabi S, Huisman A, Van Diest PJ. Digital pathology: current status and future perspectives. Histopathology. 2012;61:1–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Fu HL, Mueller JL, Javid MP, Mito JK, Kirsch DG, Ramanujam N, et al. Optimization of a widefield structured illumination microscope for non-destructive assessment and quantification of nuclear features in tumor margins of a primary mouse model of sarcoma. PLoS One. 2013;8:e68868.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lee GG, Lin HH, Tsai MR, Chou SY, Lee WJ, Liao YH, et al. Automatic cell segmentation and nuclear-to-cytoplasmic ratio analysis for third harmonic generated microscopy medical images. IEEE Trans Biomed Circuits Syst. 2013;7:158–68.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhou Y, Magee D, Treanor D, Bulpitt A. Stain guided mean-shift filtering in automatic detection of human tissue nuclei. J Pathol Inform. 2013;4:S6.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nayar R, Tabbara SO. Atypical squamous cells: update on current concepts. Clin Lab Med. 2003;23(3):605–32.CrossRefPubMedGoogle Scholar
  9. 9.
    Lallas A, Pyne J, Kyrgidis A, Andreani S, Argenziano G, Cavaller A, et al. The clinical and dermoscopic features of invasive cutaneous squamous cell carcinoma depend on the histopathologic grade of differentiation. Br J Dermatol. 2014. doi: 10.1111/bjd.13510.Google Scholar
  10. 10.
    Zalaudek I, Giacomel J, Schmid K, Bondino S, Rosendahl C, Cavicchini S, et al. Dermatoscopy of facial actinic keratosis, intraepidermal carcinoma, and invasive squamous cell carcinoma: a progression model. J Am Acad Dermatol. 2012;66:589–97.CrossRefPubMedGoogle Scholar
  11. 11.
    Brinkman JN, Hajder E, van der Holt B, Den Bakker MA, Hovius SE, Mureau MA. The effect of differentiation grade of cutaneous squamous cell carcinoma on excision margins, local recurrence, metastasis, and patient survival: a retrospective follow-up study. Ann Plast Surg. 2014 Jan 7.Google Scholar
  12. 12.
    Dinehart SM, Nelson-Adesokan P, Cockerell C, Russell S, Brown R. Metastatic cutaneous squamous cell carcinoma derived from actinic keratosis. Cancer. 1997;79:920–3.CrossRefPubMedGoogle Scholar
  13. 13.
    Petter G, Haustein UF. Histologic subtyping and malignancy assessment of cutaneous squamous cell carcinoma. Dermatol Surg. 2000;26:521–30.CrossRefPubMedGoogle Scholar
  14. 14.
    Schöchlin M, Weissinger SE, Brandes AR, Herrmann M, Möller P, Lennerz JK. A nuclear circularity-based classifier for diagnostic distinction of desmoplastic from spindle cell melanoma in digitized histological images. J Pathol Inform. 2014;5:40.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vedam VK, Boaz K, Srikant N. Prognostic efficacy of nuclear morphometry at invasive front of oral squamous cell carcinoma: an image analysis microscopic study. Anal Cell Pathol (Amst). 2014 Aug 11.Google Scholar
  16. 16.
    Namysłowski G, Scierski W, Nozyński JK, Zembala-Nozyńska E. Morphometric characteristics of cell nuclei of the precancerous lesions and laryngeal cancer. Med Sci Monit. 2004;10:CR241–5.PubMedGoogle Scholar
  17. 17.
    Rovner I, Gyulai F. Computer-assisted morphometry: a new method for assessing and distinguishing morphological variation in wild and domestic seed populations. Econ Bot. 2007;61:154–72.CrossRefGoogle Scholar
  18. 18.
    Ishido T, Yamaguchi H, Yoshida S, Tonouchi S. Morphometrical analysis of nuclear abnormality of tubular tumors of the stomach with image processing. Jpn J Cancer Res. 1992;83:294–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Setälä L, Lipponen P, Kosma VM, Marin S, Eskelinen M, Syrjänen K, et al. Nuclear morphometry as a predictor of disease outcome in gastric cancer. J Pathol. 1997;181:46–50.CrossRefPubMedGoogle Scholar
  20. 20.
    Ikeguchi M, Sakatani T, Endo K, Makino M, Kaibara N. Computerized nuclear morphometry is a useful technique for evaluating the high metastatic potential of colorectal adenocarcinoma. Cancer. 1999;86:1944–51.CrossRefPubMedGoogle Scholar
  21. 21.
    Ikeguchi M, Oka S, Saito H, Kondo A, Tsujitani S, Maeta M, et al. Computerized nuclear morphometry: a new morphologic assessment for advanced gastric adenocarcinoma. Ann Surg. 1999;229:55–61.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ikeguchi M, Sato N, Hirooka Y, Kaibara N. Computerized nuclear morphometry of hepatocellular carcinoma and its relation to proliferative activity. J Surg Oncol. 1998;68:225–30.CrossRefPubMedGoogle Scholar
  23. 23.
    Gilbert N, Gilchrist S, Bickmore WA. Chromatin organization in the mammalian nucleus. Int Rev Cytol. 2005;242:283–336.CrossRefPubMedGoogle Scholar
  24. 24.
    Friedl P, Wolf K, Lammerding J. Nuclear mechanics during cell migration. Curr Opin Cell Biol. 2011;23:55–64. Erratum In Curr Opin Cell Biol. 2011;23:253.CrossRefPubMedGoogle Scholar
  25. 25.
    Zink D, Fischer AH, Nickerson JA. Nuclear structure in cancer cells. Nat Rev Cancer. 2004;4:677–87.CrossRefPubMedGoogle Scholar
  26. 26.
    Nickerson JA. Nuclear dreams: the malignant alteration of nuclear architecture. J Cell Biochem. 1998;70:172–80.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Burn and Plastic Surgery, Huai’an First People’s HospitalNanjing Medical UniversityHuai’anChina
  2. 2.Department of DermatologyAir Force General Hospital of PLABeijingChina
  3. 3.Department of PainHuaiyin Hospital of Huai’an CityHuai’anChina

Personalised recommendations