Tumor Biology

, Volume 36, Issue 8, pp 6075–6082 | Cite as

Correlation of Musashi-1, Lgr5, and pEGFR expressions in human small intestinal adenocarcinomas

  • Yan Wang
  • Cong-Qing Jiang
  • Li-Fang Fan
Research Article


Recent studies have revealed that Musashi-1 and Lgr5 (leucine-rich-repeat-containing G-protein-coupled receptor 5) were putative stem cell genes. The epidermal growth factor receptor (EGFR) has also been extensively studied; it was known as an oncogenic driver in cancers. Overexpressions of Musashi-1, EGFR, and Lgr5 have been reported in some tumor tissues and cell lines. In this study, we used immunohistochemical analysis to investigate the expression pattern of Musashi-1, Lgr5, and pEGFR in 38 small intestinal adenocarcinomas (SIAs) resection specimens, 20 matched normal specimens and tried to analyze the correlations among them. The positive rate of Musashi-1, Lgr5, and pEGFR in SIAs, respectively, was 71 % (27/38), 55 % (21/38), and 45 % (17/38). Compared with the adjacent normal small intestinal mucosa, Musashi-1, Lgr5, and pEGFR protein were overexpressed in SIAs (P< 0.05). Furthermore, Musashi-1 and Lgr5 expressions were significantly correlated with the depth of wall invasion (P = 0.0011, P = 0.0017, respectively). Musashi-1 expression was closely correlated with Lgr5 (P = 0.015, r = 0.392). However, pEGFR expression was not associated with age, gender, tumor size, differentiation, depth of invasion, lymphatic metastasis, TNM stage, and pEGFR expression was not correlated with Musashi-1 or Lgr5 (P > 0.05, r = 0.064; P > 0.05, r = 0.307, respectively). Thus, we suggest that Musashi-1, Lgr5, and pEGFR are overexpressed in human SIAs and may play roles in human SIA carcinogenesis and progression.

Key words

Small intestinal carcinoma Stem cells Cancer stem cells Pathogenesis 


Conflicts of interest



  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.CrossRefPubMedGoogle Scholar
  2. 2.
    Howe JR, Karnell LH, Menck HR, et al. The American college of surgeons commission on cancer and the American cancer society. Adenocarcinoma of the small bowel: review of the national cancer data base, 1985–1995. Cancer. 1999;86:2693–706.CrossRefPubMedGoogle Scholar
  3. 3.
    Lu Y, Frobom R, Lagergren J. Incidence patterns of small bowel cancer in a population-based study in Sweden: increase in duodenal adenocarcinoma. Cancer Epidemiol. 2012;36:e158–63.CrossRefPubMedGoogle Scholar
  4. 4.
    Dabaja BS, Suki D, Pro B, et al. Adenocarcinoma of the small bowel: presentation, prognostic factors, and outcome of 217 patients. Cancer. 2004;101:518–26.CrossRefPubMedGoogle Scholar
  5. 5.
    Czaykowski P, Hui D. Chemotherapy in small bowel adenocarcinoma: 10-year experience of the British Columbia cancer agency. Clin Oncol (R Coll Radiol). 2007;19:143–9.CrossRefGoogle Scholar
  6. 6.
    Koo DH, Yun SC, Hong YS, et al. Systemic chemo-therapy for treatment of advanced small bowel adenocarcinoma with prognostic factor analysis: retrospective study. BMC Cancer. 2011;11:205.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jigyasu D, Bedikian AY, Stroehlein JR. Chemotherapy for primary adenocarcinoma of the small bowel. Cancer. 1984;53:23–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Bobryshev YV, Freeman AK, Botelho NK, et al. Expression of the putative stem cell marker Musashi-1 in Barrett’s esophagus and esophageal adenocarcinoma. Dis Esophagus. 2010;23:580–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Kuroda J, Yoshida M, Kitajima M, et al. Utility of preoperative chemoradiotherapy for advanced esophageal carcinoma. J Gastroenterol Hepatol. 2012;27 Suppl 3:88–94.CrossRefPubMedGoogle Scholar
  10. 10.
    Siebzehnrubl FA, Jeske I, Muller D, et al. Spontaneous in vitro transformation of adult neural precursors into stem-like cancer cells. Brain Pathol. 2009;19:399–408.CrossRefPubMedGoogle Scholar
  11. 11.
    McDonald T, Wang R, Bailey W, et al. Identification and cloning of an orphan G protein-coupled receptor of the glycoprotein hormone receptor subfamily. Biochem Biophys Res Commun. 1998;247:266–70.CrossRefPubMedGoogle Scholar
  12. 12.
    Barker N, Clevers H. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology. 2010;138:1681–96.CrossRefPubMedGoogle Scholar
  13. 13.
    Barker N, van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Rezza A, Skah S, Roche C, et al. The overexpression of the putative gut stem cell marker Musashi-1 induces tumorigenesis through Wnt and Notch activation. J Cell Sci. 2010;123:3256–65.CrossRefPubMedGoogle Scholar
  15. 15.
    Walker F, Zhang HH, Odorizzi A, et al. LGR5 is a negative regulator of tumourigenicity, antagonizes Wnt signalling and regulates cell adhesion in colorectal cancer cell lines. PLoS ONE. 2011;6:e22733.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Potten CS, Booth C, Tudor GL, et al. Identification of a putative intestinal stem cell and early lineage marker, Musashi-1. Differentiation. 2003;71:28–41.CrossRefPubMedGoogle Scholar
  17. 17.
    Montgomery RK, Breault DT. Small intestinal stem cell markers. J Anat. 2008;213:52–8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nishimura S, Wakabayashi N, Toyoda K, et al. Expression of Musashi-1 in human normal colon crypt cells: a possible stem cell marker of human colon epithelium. Dig Dis Sci. 2003;48:1523–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Hirsch D, Barker N, McNeil N, et al. LGR5 positivity defines stem-like cells in colorectal cancer. Carcinogenesis. 2014;35:849–58.CrossRefPubMedGoogle Scholar
  20. 20.
    Schulenburg A, Cech P, Herbacek I, et al. CD44-positive colorectal adenoma cells express the potential stem cell markers Musashi antigen (msi1) and ephrin B2 receptor (EphB2). J Pathol. 2007;213:152–60.CrossRefPubMedGoogle Scholar
  21. 21.
    Fan LF, Dong WG, Jiang CQ, et al. Expression of putative stem cell genes musashi-1, and β1-integrin in human colorectal adenomas and adenocarcinoma. Int J Color Dis. 2010;25:17–23.CrossRefGoogle Scholar
  22. 22.
    Uchida H, Yamazaki K, Fukuma M, et al. Overexpression of leucine-rich repeat-containing G protein-coupled receptor 5 in colorectal cancer. Cancer Sci. 2010;101:1731–7.CrossRefPubMedGoogle Scholar
  23. 23.
    Toda M, Iizuka Y, Yu W, et al. Expression of the neural RNA-binding protein Musashi1 in human gliomas. Glia. 2001;34:1–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Shu HJ, Saito T, Watanabe H, et al. Expression of the Musashi1 gene encoding the RNA-binding protein in human hepatoma cell lines. Biochem Biophys Res Commun. 2002;293:150–4.CrossRefPubMedGoogle Scholar
  25. 25.
    Ye F, Zhou C, Cheng Q, et al. Stem-cell-abundant proteins Nanog, Nucleostemin and Musashi1 are highly expressed in malignant cervical epithelial cells. BMC Cancer. 2008;8:108.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yamanoi K, Fukuma M, Uchida H, et al. Overexpression of leucine-rich repeat-containing G protein-coupled receptor 5 in gastric cancer. Pathol Int. 2013;63:13–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Becker L, Huang Q, Mashimo Q. Lgr5, an intestinal stem cell marker, is abnormally expressed in Barrett’s esophagus and esophageal adenocarcinoma. Dis Esophagus. 2010;23:168–74.CrossRefPubMedGoogle Scholar
  28. 28.
    Wu XS, Xi HQ, Chen L. Lgr5 is a potential marker of colorectal carcinoma stem cells that correlates with patient survival. World J Surg Oncol. 2012;10:244.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Todaro M, Francipane MG, Medema JP, Stassi G. Colon cancer stem cells: promise of targeted therapy. Gastroenterology. 2010;138:2151–62.CrossRefPubMedGoogle Scholar
  30. 30.
    Al-Hajj M. Cancer stem cells and oncology therapeutics. Curr Opin Oncol. 2007;19:61–4.PubMedGoogle Scholar
  31. 31.
    Normanno N, De Luca A, Bianco C, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006;366:2–16.CrossRefPubMedGoogle Scholar
  32. 32.
    Lurje G, Lenz HJ. EGFR signaling and drug discovery. Oncol-Basel. 2009;77:400–10.CrossRefGoogle Scholar
  33. 33.
    Bianco R, Gelardi T, Damiano V, Ciardiello F, Tortora G. Rational bases for the development of EGFR inhibitors for cancer treatment. Int J Biochem Cell Biol. 2007;39:1416–31.CrossRefPubMedGoogle Scholar
  34. 34.
    Sebastian S, Settleman J, Reshkin SJ, et al. The complexity of targeting EGFR signalling in cancer: from expression to turnover. Biochim Biophys Acta. 2006;1766:120–39.PubMedGoogle Scholar
  35. 35.
    Zhang H, Berezov A, Wang Q, et al. ErbB receptors: from oncogenes to targeted cancer therapies. J Clin Invest. 2007;117:2051–8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Arteaga CL. ErbB-targeted therapeutic approaches in human cancer. Exp Cell Res. 2003;284:122–30.CrossRefPubMedGoogle Scholar
  37. 37.
    Li S, Li Q. Cancer stem cells and tumor metastasis (Review). Int J Oncol. 2014;44:1806–12.PubMedPubMedCentralGoogle Scholar
  38. 38.
    O’Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.CrossRefPubMedGoogle Scholar
  39. 39.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Levin TG, Powell AE, Davies PS, et al. Characterization of the intestinal cancer stem cell marker CD166 in the human and mouse gastrointestinal tract. Gastroenterology. 2010;139:2072–82.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chu P, Clanton DJ, Snipas TS, et al. Characterization of a subpopulation of colon cancer cells with stem cell-like properties. Int J Cancer. 2009;124:1312–21.CrossRefPubMedGoogle Scholar
  42. 42.
    Carpentino JE, Hynes MJ, Appelman HD, et al. Aldehyde dehydrogenase expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer. Cancer Res. 2009;69:8208–15.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Becker L, Huang Q, Mashimo H. Immunostaining of Lgr5, an intestinal stem cell marker, in normal and premalignant human gastrointestinal tissue. Sci World J. 2008;8:1168–76.CrossRefGoogle Scholar
  44. 44.
    Garcia MI, Ghiani M, Lefort A, et al. LGR5 deficiency deregulates Wnt signaling and leads to precocious Paneth cell differentiation in the fetal intestine. Dev Biol. 2009;331:58–67.CrossRefPubMedGoogle Scholar
  45. 45.
    Sureban SM, May R, George RJ, et al. Knockdown of RNA binding protein Musashi-1 leads to tumor regression in vivo. Gastroenterology. 2008;134:1448–58.CrossRefPubMedGoogle Scholar
  46. 46.
    Morita H, Mazerbourg S, Bouley DM, et al. Neonatal lethality of LGR5 null mice is associated with ankyloglossia and gastrointestinal distension. Mol Cell Biol. 2004;24:9736–43.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Aguirre A, Rubio ME, Gallo V. Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature. 2010;467:323–7.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Liu X, Qin J, Luo Q, et al. Cross-talk between EGF and BMP9 signalling pathways regulates the osteogenic differentiation of mesenchymal stem cells. J Cell Mol Med. 2013;17:1160–72.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Perez A, Neskey DM, Wen J, et al. CD44 interacts with EGFR and promotes head and neck squamous cell carcinoma initiation and progression. Oral Oncol. 2013;49:306–13.CrossRefPubMedGoogle Scholar
  50. 50.
    Feng Y, Dai X, Li X, et al. EGF signalling pathway regulates colon cancer stem cell proliferation and apoptosis. Cell Prolif. 2012;45:413–9.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Pathology, Renmin HospitalWuhan UniversityWuhanChina
  2. 2.Department of Colorectal Surgery, Zhongnan HospitalWuhan UniversityWuhanChina

Personalised recommendations