Tumor Biology

, Volume 36, Issue 8, pp 6019–6028 | Cite as

Identification of suitable endogenous controls for gene and miRNA expression studies in irradiated prostate cancer cells

  • H. Lawlor
  • A. Meunier
  • N. McDermott
  • T. H. Lynch
  • L. Marignol
Research Article

Abstract

This study aimed to to evaluate the stability of commonly used endogenous control genes for messenger RNA (mRNA) (N = 16) and miRNAs (N = 3) expression studies in prostate cell lines following irradiation. The stability of endogenous control genes expression in irradiated (6 Gy) versus unirradiated controls was quantified using NormFinder and coefficient of variation analyses. HPRT1 and 18S were identified as most and least stable endogenous controls, respectively, for mRNA expression studies in irradiated prostate cells. SNORD48 and miR16 miRNA endogenous controls tested were associated with low coefficient of variations following irradiation (6 Gy). This study highlights that commonly used endogenous controls can be responsive to radiation and validation is required prior to gene/miRNAs expression studies.

Keywords

Radiation RT-PCR Endogenous control 

Notes

Acknowledgments

This project was funded by an Irish Cancer Society research grant (PCI12MAR).

Conflicts of interest

None

References

  1. 1.
    Smirnov DA, Brady L, Halasa K, Morley M, Solomon S, Cheung VG. Genetic variation in radiation-induced cell death. Genome Res. 2011.Google Scholar
  2. 2.
    Sharungbam GD, Schwager C, Chiblak S, Brons S, Hlatky L, Haberer T, et al. Identification of stable endogenous control genes for transcriptional profiling of photon, proton and carbon-ion irradiated cells. Radiat Oncol. 2012;7:70.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Haberhausen G, Pinsl J, Kuhn CC, Markert-Hahn C. Comparative study of different standardization concepts in quantitative competitive reverse transcription-PCR assays. J Clin Microbiol. 1998;36:628–33.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, et al. Housekeeping genes as internal standards: use and limits. J Biotechnol. 1999;75:291–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Suzuki T, Higgins PJ, Crawford DR. Control selection for RNA quantitation. Biotechniques. 2000;29:332–7.PubMedGoogle Scholar
  6. 6.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55:611–22.CrossRefPubMedGoogle Scholar
  7. 7.
    Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A. Validation of housekeeping genes for normalizing RNA expression in real-time pcr. Biotechniques. 2004 37:112–114, 116, 118–119.Google Scholar
  9. 9.
    Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005;6:279–84.CrossRefPubMedGoogle Scholar
  10. 10.
    Vaiphei ST, Keppen J, Nongrum S, Chaubey RC, Kma L, Sharan RN: Evaluation of endogenous control gene(s) for gene expression studies in human blood exposed to 60co gamma-rays ex vivo. J Radiation Res. 2014.Google Scholar
  11. 11.
    Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods. 2010;50:298–301.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schaefer A, Jung M, Miller K, Lein M, Kristiansen G, Erbersdobler A, et al. Suitable reference genes for relative quantification of miRNA expression in prostate cancer. Exp Mol Med. 2010;42:749–58.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Peltier HJ, Latham GJ. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA. 2008;14:844–52.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nikiforova MN, Gandhi M, Kelly L, Nikiforov YE. MicroRNA dysregulation in human thyroid cells following exposure to ionizing radiation. Thyroid. 2011;21:261–6.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gordanpour A, Nam RK, Sugar L, Bacopulos S, Seth A. MicroRNA detection in prostate tumors by quantitative real-time PCR (qPCR). J Vis Exp. 2012.Google Scholar
  16. 16.
    Mattick JS. The functional genomics of noncoding RNA. Science. 2005;309:1527–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Kiss AM, Jady BE, Darzacq X, Verheggen C, Bertrand E, Kiss T. A Cajal body-specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains. Nucleic Acids Res. 2002;30:4643–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pickard MR, Mourtada-Maarabouni M, Williams GT. Long non-coding RNA GAS5 regulates apoptosis in prostate cancer cell lines. Biochim Biophys Acta. 1832;2013:1613–23.Google Scholar
  19. 19.
    Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene. 2009;28:195–208.CrossRefPubMedGoogle Scholar
  20. 20.
    Yin D, He X, Zhang E, Kong R, De W, Zhang Z. Long noncoding RNA GAS5 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Med Oncol. 2014;31:253.CrossRefPubMedGoogle Scholar
  21. 21.
    Song J, Ahn C, Chun CH, Jin EJ. A long non-coding RNA, GAS5, plays a critical role in the regulation of miR-21 during osteoarthritis. J Orthop Res. 2014;32:1628–35.CrossRefPubMedGoogle Scholar
  22. 22.
    Sun M, Jin FY, Xia R, Kong R, Li JH, Xu TP, et al. Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC Cancer. 2014;14:319.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dong XY, Rodriguez C, Guo P, Sun X, Talbot JT, Zhou W, et al. SnoRNA U50 is a candidate tumor-suppressor gene at 6q14.3 with a mutation associated with clinically significant prostate cancer. Hum Mol Genet. 2008;17:1031–42.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pacilli A, Ceccarelli C, Trere D, Montanaro L. SnoRNA U50 levels are regulated by cell proliferation and rRNA transcription. Int J Mol Sci. 2013;14:14923–35.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hu J, Wang Z, Liao BY, Yu L, Gao X, Lu S, et al. Human miR-1228 as a stable endogenous control for the quantification of circulating microRNAs in cancer patients. Int J Cancer. 2014;135:1187–94.CrossRefPubMedGoogle Scholar
  26. 26.
    Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64:5245–50.CrossRefPubMedGoogle Scholar
  27. 27.
    Wu W, Dave N, Tseng GC, Richards T, Xing EP, Kaminski N. Comparison of normalization methods for codelink bioarray data. BMC Bioinformatics. 2005;6:309.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Carlsson J, Helenius G, Karlsson M, Lubovac Z, Andren O, Olsson B, et al. Validation of suitable endogenous control genes for expression studies of miRNA in prostate cancer tissues. Cancer Genet Cytogenet. 2010;202:71–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Vajda A, Marignol L, Barrett C, Madden SF, Lynch TH, Hollywood D, et al. Gene expression analysis in prostate cancer: the importance of the endogenous control. Prostate. 2013;73:382–90.CrossRefPubMedGoogle Scholar
  30. 30.
    Tricarico C, Pinzani P, Bianchi S, Paglierani M, Distante V, Pazzagli M, et al. Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal Biochem. 2002;309:293–300.CrossRefPubMedGoogle Scholar
  31. 31.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002 3:RESEARCH0034.Google Scholar
  32. 32.
    Aerts JL, Gonzales MI, Topalian SL: Selection of appropriate control genes to assess expression of tumor antigens using real-time RT-PCR. Biotechniques. 2004 36:84–86, 88, 90–81.Google Scholar
  33. 33.
    Dheda K, Huggett JF, Chang JS, Kim LU, Bustin SA, Johnson MA, et al. The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem. 2005;344:141–3.CrossRefPubMedGoogle Scholar
  34. 34.
    Giricz O, Lauer-Fields JL, Fields GB. The normalization of gene expression data in melanoma: investigating the use of glyceraldehyde 3-phosphate dehydrogenase and 18S ribosomal RNA as internal reference genes for quantitative real-time PCR. Anal Biochem. 2008;380:137–9.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Mozdziak PE, Dibner JJ, McCoy DW. Glyceraldehyde-3-phosphate dehydrogenase expression varies with age and nutrition status. Nutrition. 2003;19:438–40.CrossRefPubMedGoogle Scholar
  36. 36.
    Marignol L, Coffey M, Hollywood D, Lawler M. Radiation to control transgene expression in tumors. Cancer Biol Ther. 2007;6.Google Scholar
  37. 37.
    Bustin SA, Dorudi S. The value of microarray techniques for quantitative gene profiling in molecular diagnostics. Trends Mol Med. 2002;8:269–72.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • H. Lawlor
    • 1
  • A. Meunier
    • 1
  • N. McDermott
    • 1
  • T. H. Lynch
    • 1
    • 2
  • L. Marignol
    • 1
  1. 1.Radiobiology and Molecular Oncology, Applied Radiation Therapy TrinityTrinity College DublinDublinIreland
  2. 2.Department of UrologySt James’s HospitalDublinIreland

Personalised recommendations