Tumor Biology

, Volume 36, Issue 8, pp 6011–6018 | Cite as

Targeting delivery of lipocalin 2-engineered mesenchymal stem cells to colon cancer in order to inhibit liver metastasis in nude mice

  • Mozhgan Dehghan Harati
  • Fatemeh Amiri
  • Fatemeh Jaleh
  • Ahmad Mehdipour
  • Mitra Dehghan Harati
  • Sedigheh Molaee
  • Marzieh Bahadori
  • Mohammad Ali Shokrgozar
  • Mohammad Ali Jalili
  • Mehryar Habibi Roudkenar
Research Article


One of the major obstacles in cancer therapy is the lack of anticancer agent specificity to tumor tissues. The strategy of cell-based therapy is a promising therapeutic option for cancer treatment. The specific tumor-oriented migration of mesenchymal stem cells (MSCs) makes them a useful vehicle to deliver anticancer agents. In this study, we genetically manipulated bone marrow-derived mesenchymal stem cells with their lipocalin 2 (Lcn2) in order to inhibit liver metastasis of colon cancer in nude mice. Lcn2 was successfully overexpressed in transfected MSCs. The PCR results of SRY gene confirmed the presence of MSCs in cancer liver tissue. This study showed that Lcn2-engineered MSCs (MSC-Lcn2) not only inhibited liver metastasis of colon cancer but also downregulated the expression of vascular endothelial growth factor (VEGF) in the liver. Overall, MSCs by innate tropism toward cancer cells can deliver the therapeutic agent, Lcn2, and inhibit cancer metastasis. Hence, it could be a new modality for efficient targeted delivery of anticancer agent to liver metastasis.


Mesenchymal stem cells Lipocalin 2 Liver metastasis Nude mice Colon cancer 



This research was supported by the grant awarded from the Iranian Council of Stem Cell Technology.

Conflicts of interest


Ethical approval

All procedures performed in this study involving human participants were in accordance with the Ethical Standards of the Ethics Committee of Iranian Blood Transfusion Organization (ECIBTO) as well as the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Bone marrow samples were obtained from healthy donors with informed consent.

In addition, all procedures performed in this study involving animals were in accordance with the ethical standards of institutional guidelines and approved protocols.


  1. 1.
    Loebinger MR, Eddaoudi A, Davies D, Janes SM. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res. 2009;69(10):4134–42. doi: 10.1158/0008-5472.CAN-08-4698.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ferlay JSI, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. GLOBOCAN. Cancer incidence and mortality worldwide: IARC CancerBase No. 11. 2012.Google Scholar
  3. 3.
    Bird NC, Mangnall D, Majeed AW. Biology of colorectal liver metastases: a review. J Surg Oncol. 2006;94(1):68–80. doi: 10.1002/jso.20558.CrossRefPubMedGoogle Scholar
  4. 4.
    Dai LJ, Moniri MR, Zeng ZR, Zhou JX, Rayat J, Warnock GL. Potential implications of mesenchymal stem cells in cancer therapy. Cancer Lett. 2011;305(1):8–20. doi: 10.1016/j.canlet.2011.02.012.CrossRefPubMedGoogle Scholar
  5. 5.
    Sun XY, Nong J, Qin K, Warnock GL, Dai LJ. Mesenchymal stem cell-mediated cancer therapy: a dual-targeted strategy of personalized medicine. World J Stem Cells. 2011;3(11):96–103. doi: 10.4252/wjsc.v3.i11.96.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Schwartz CL. Long-term survivors of childhood cancer: the late effects of therapy. Oncologist. 1999;4(1):45–54.PubMedGoogle Scholar
  7. 7.
    Stein KD, Syrjala KL, Andrykowski MA. Physical and psychological long-term and late effects of cancer. Cancer. 2008;112(11 Suppl):2577–92. doi: 10.1002/cncr.23448.CrossRefPubMedGoogle Scholar
  8. 8.
    Hu YL, Fu YH, Tabata Y, Gao JQ. Mesenchymal stem cells: a promising targeted-delivery vehicle in cancer gene therapy. J Control Release: Off J Control Release Soc. 2010;147(2):154–62. doi: 10.1016/j.jconrel.2010.05.015.CrossRefGoogle Scholar
  9. 9.
    Compte M, Cuesta AM, Sanchez-Martin D, Alonso-Camino V, Vicario JL, Sanz L, et al. Tumor immunotherapy using gene-modified human mesenchymal stem cells loaded into synthetic extracellular matrix scaffolds. Stem Cells. 2009;27(3):753–60. doi: 10.1634/stemcells. 2008-0831.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells. 2006;24(2):462–71. doi: 10.1634/stemcells. 2004-0331.CrossRefPubMedGoogle Scholar
  11. 11.
    Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 2002;62(13):3603–8.PubMedGoogle Scholar
  12. 12.
    Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H, et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther. 2004;11(14):1155–64. doi: 10.1038/ Scholar
  13. 13.
    Choi SA, Lee JY, Wang KC, Phi JH, Song SH, Song J, et al. Human adipose tissue-derived mesenchymal stem cells: characteristics and therapeutic potential as cellular vehicles for prodrug gene therapy against brainstem gliomas. Eur J Cancer. 2012;48(1):129–37. doi: 10.1016/j.ejca.2011.04.033.CrossRefPubMedGoogle Scholar
  14. 14.
    Sun XL, Xu ZM, Ke YQ, Hu CC, Wang SY, Ling GQ, et al. Molecular targeting of malignant glioma cells with an EphA2-specific immunotoxin delivered by human bone marrow-derived mesenchymal stem cells. Cancer Lett. 2011;312(2):168–77. doi: 10.1016/j.canlet.2011.07.035.CrossRefPubMedGoogle Scholar
  15. 15.
    Maestroni GJ, Hertens E, Galli P. Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol Life Sci: CMLS. 1999;55(4):663–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Sun B, Roh KH, Park JR, Lee SR, Park SB, Jung JW, et al. Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy. 2009;11(3):289–98. doi: 10.1080/14653240902807026. 1 p following 98.CrossRefPubMedGoogle Scholar
  17. 17.
    Ren C, Kumar S, Chanda D, Kallman L, Chen J, Mountz JD, et al. Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Ther. 2008;15(21):1446–53. doi: 10.1038/gt.2008.101.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kidd S, Caldwell L, Dietrich M, Samudio I, Spaeth EL, Watson K, et al. Mesenchymal stromal cells alone or expressing interferon-beta suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy. 2010;12(5):615–25. doi: 10.3109/14653241003631815.CrossRefPubMedGoogle Scholar
  19. 19.
    Zischek C, Niess H, Ischenko I, Conrad C, Huss R, Jauch KW, et al. Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Ann Surg. 2009;250(5):747–53. doi: 10.1097/SLA.0b013e3181bd62d0.CrossRefPubMedGoogle Scholar
  20. 20.
    Lee HJ, Lee EK, Lee KJ, Hong SW, Yoon Y, Kim JS. Ectopic expression of neutrophil gelatinase-associated lipocalin suppresses the invasion and liver metastasis of colon cancer cells. Int J Cancer J Int Du Cancer. 2006;118(10):2490–7. doi: 10.1002/ijc.21657.CrossRefGoogle Scholar
  21. 21.
    Lim R, Ahmed N, Borregaard N, Riley C, Wafai R, Thompson EW, et al. Neutrophil gelatinase-associated lipocalin (NGAL) an early-screening biomarker for ovarian cancer: NGAL is associated with epidermal growth factor-induced epithelio-mesenchymal transition. Int J Cancer J Int du cancer. 2007;120(11):2426–34. doi: 10.1002/ijc.22352.CrossRefGoogle Scholar
  22. 22.
    Tong Z, Kunnumakkara AB, Wang H, Matsuo Y, Diagaradjane P, Harikumar KB, et al. Neutrophil gelatinase-associated lipocalin: a novel suppressor of invasion and angiogenesis in pancreatic cancer. Cancer Res. 2008;68(15):6100–8. doi: 10.1158/0008-5472.CAN-08-0540.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Halabian R, Tehrani HA, Jahanian-Najafabadi A, Habibi RM. Lipocalin-2-mediated upregulation of various antioxidants and growth factors protects bone marrow-derived mesenchymal stem cells against unfavorable microenvironments. Cell Stress Chaperones. 2013;18(6):785–800. doi: 10.1007/s12192-013-0430-2.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bolignano D, Donato V, Lacquaniti A, Fazio MR, Bono C, Coppolino G, et al. Neutrophil gelatinase-associated lipocalin (NGAL) in human neoplasias: a new protein enters the scene. Cancer Lett. 2010;288(1):10–6. doi: 10.1016/j.canlet.2009.05.027.CrossRefPubMedGoogle Scholar
  25. 25.
    Mohammadzadeh M, Halabian R, Gharehbaghian A, Amirizadeh N, Jahanian-Najafabadi A, Roushandeh AM, et al. Nrf-2 overexpression in mesenchymal stem cells reduces oxidative stress-induced apoptosis and cytotoxicity. Cell Stress Chaperones. 2012;17(5):553–65. doi: 10.1007/s12192-012-0331-9.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C. Adipose tissue–derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res. 2007;67:6304–13. doi: 10.1158/0008-5472.CAN-06-4024.CrossRefPubMedGoogle Scholar
  27. 27.
    Adil M, Belur L, Pearce TR, Levine RM, Tisdale AW, Sorenson BS, et al. PR_b functionalized stealth liposomes for targeted delivery to metastatic colon cancer. Biomater Sci. 2013;1(4):393–401. doi: 10.1039/C2BM00128D.CrossRefGoogle Scholar
  28. 28.
    Moritake S, Taira S, Ichiyanagi Y, Morone N, Song SY, Hatanaka T, et al. Functionalized nano-magnetic particles for an in vivo delivery system. J Nanosci Nanotechnol. 2007;7(3):937–44.CrossRefPubMedGoogle Scholar
  29. 29.
    Lu RM, Chen MS, Chang DK, Chiu CY, Lin WC, Yan SL, et al. Targeted drug delivery systems mediated by a novel Peptide in breast cancer therapy and imaging. PLoS One. 2013;8(6):e66128. doi: 10.1371/journal.pone.0066128.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Li EM, Xu LY, Cai WJ, Xiong HQ, Shen ZY, Zeng Y. Functions of neutrophil gelatinase-associated lipocalin in the esophageal carcinoma cell line SHEEC. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao Acta Biochim Biophys Sin. 2003;35(3):247–54.PubMedGoogle Scholar
  31. 31.
    Venkatesha S, Hanai J, Seth P, Karumanchi SA, Sukhatme VP. Lipocalin 2 antagonizes the proangiogenic action of ras in transformed cells. Mol Cancer Res : MCR. 2006;4(11):821–9. doi: 10.1158/1541-7786.MCR-06-0110.CrossRefPubMedGoogle Scholar
  32. 32.
    Yang J, McNeish B, Butterfield C, Moses MA. Lipocalin 2 is a novel regulator of angiogenesis in human breast cancer. FASEB J : Off Publ Fed Am Soc Exp Biol. 2013;27(1):45–50. doi: 10.1096/fj.12-211730.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Mozhgan Dehghan Harati
    • 1
  • Fatemeh Amiri
    • 1
  • Fatemeh Jaleh
    • 1
  • Ahmad Mehdipour
    • 2
  • Mitra Dehghan Harati
    • 3
  • Sedigheh Molaee
    • 1
  • Marzieh Bahadori
    • 1
  • Mohammad Ali Shokrgozar
    • 4
  • Mohammad Ali Jalili
    • 1
  • Mehryar Habibi Roudkenar
    • 1
  1. 1.Blood Transfusion Research CenterHigh Institute for Research and Education in Transfusion MedicineTehranIran
  2. 2.Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
  3. 3.Shahid Sadoughi University of Medical SciencesYazdIran
  4. 4.National Cell Bank of IranPasteur Institute of IranTehranIran

Personalised recommendations