Tumor Biology

, Volume 36, Issue 8, pp 5953–5964 | Cite as

A link between cold environment and cancer

  • Ankit Sharma
  • Harphool Kumar Verma
  • Savitri Joshi
  • Mahaveer Singh Panwar
  • Chandi C. Mandal
Research Article

Abstract

Many risk factors such as smoking and change of life style have been shown to promote genetic and adaptive epigenetic changes responsible for tumorigenesis. This study brings environmental temperature as a cancer causing factor to light. The cancer mortality rate (CMR) of a country was correlated with 17 different variables. Multivariate analysis of a total of 188 countries found that the average annual temperature (AAT) of a country might have a significant contribution to cancer death when compared with other factors such as alcohol and meat consumption. Univariate analysis found a negative correlation between AAT and CMR. All these countries were categorized into three temperature zones (zone I, −2 to 11.5 °C; number of countries, 38; zone II, 11.6 to 18.6 °C; number of countries, 32; and zone III, 18.7 to 30 °C; number of countries, 118). Out of the top-most 50 countries having the highest CMR, 26 (68.42 %), 10 (31.25 %), and 14 (11.66 %) belong to zone I, zone II, and zone III, respectively. Out of the least 50 countries having the lowest CMR, 1 (2.63 %), 4 (12.5 %), and 45 (37.5 %) belong to zone I, zone II, and zone III, respectively. CMR is low in those countries situated near to the Torrid zone (33° N to 23.5°S), but it is high for those countries situated away from these two latitudes. These data indicate that cold temperature may have a contribution in increasing tumorigenesis. High metabolic stress, which is the result of maintaining our body temperature against a cold environment, could be the possible cause for the higher cancer mortality.

Keywords

Cancer mortality Body temperature Environmental temperature Metabolic stress Temperate zone Tumorigenesis 

Notes

Acknowledgments

We thank Prof. James Radosevich, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA for his valuable comments and suggestions, and Dr. Amit Chakrabarty, Department of Mathematics, Central University of Rajasthan, India, for his help in analyzing data.

Conflicts of interest

All authors have declared no conflict of interest on this study.

Funding support

CCM is supported by UGC Start-UP-Grant [30-49/2014 (BSR)] and Central University of Rajasthan, India, and AS is supported by fellowship provided by Central University of Rajasthan, India.

Supplementary material

13277_2015_3270_MOESM1_ESM.doc (38 kb)
Supplementary Table S1 (DOC 38 kb)
13277_2015_3270_MOESM2_ESM.pdf (448 kb)
Supplementary Table S2 (PDF 448 kb)
13277_2015_3270_MOESM3_ESM.pdf (349 kb)
Supplementary Table S3 (PDF 349 kb)
13277_2015_3270_MOESM4_ESM.pdf (232 kb)
Supplementary Table S4 (PDF 232 kb)
13277_2015_3270_MOESM5_ESM.doc (39 kb)
Supplementary Table S5 (DOC 39 kb)
13277_2015_3270_MOESM6_ESM.pdf (244 kb)
Supplementary Table S6 (PDF 243 kb)
13277_2015_3270_MOESM7_ESM.pdf (280 kb)
Supplementary Table S7 (PDF 279 kb)

References

  1. 1.
    Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. CA: Cancer J Clin. 2010;60(4):207–21.Google Scholar
  2. 2.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.CrossRefPubMedGoogle Scholar
  3. 3.
    Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;396(6712):643–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131(6):1190–203.CrossRefPubMedGoogle Scholar
  6. 6.
    Zheng J. Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (review). Oncol Lett. 2012;4(6):1151–7.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Peto R, Lopez AD, Boreham J, Thun M. Mortality from smoking in developed countries 1950–2005 (or later). Population. 2012;251351(103074):112996.Google Scholar
  8. 8.
    Popkin BM. Urbanization, lifestyle changes and the nutrition transition. World Dev. 1999;27(11):1905–16.CrossRefGoogle Scholar
  9. 9.
    Tinelli A, Vergara D, Martignago R, Leo G, Malvasi A, Tinelli R. Hormonal carcinogenesis and socio-biological development factors in endometrial cancer: a clinical review. Acta Obstet Gynecol Scand. 2008;87(11):1101–13.CrossRefPubMedGoogle Scholar
  10. 10.
    Key TJ, Allen NE, Verkasalo PK, Banks E. Energy balance and cancer: the role of sex hormones. Proc Nutr Soc. 2001;60(01):81–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4(8):579–91.CrossRefPubMedGoogle Scholar
  12. 12.
    Basen-Engquist K, Chang M. Obesity and cancer risk: recent review and evidence. Curr Oncol Rep. 2011;13(1):71–6.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer. 2013;13(4):227–32.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kiberstis PA. Cholesterol and cancer. Sci Signal. 2013;6(304):ec292.CrossRefGoogle Scholar
  15. 15.
    Furuta E, Okuda H, Kobayashi A, Watabe K. Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochimica et Biophysica Acta (BBA)-Rev Cancer. 2010;1805(2):141–52.CrossRefGoogle Scholar
  16. 16.
    DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20.CrossRefPubMedGoogle Scholar
  17. 17.
    Shoshani O, Zipori D. Stress as a fundamental theme in cell plasticity. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2014.Google Scholar
  18. 18.
    Benz CC, Yau C. Ageing, oxidative stress and cancer: paradigms in parallax. Nat Rev Cancer. 2008;8(11):875–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603–16.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95.CrossRefPubMedGoogle Scholar
  21. 21.
    Longo VD, Fontana L. Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci. 2010;31(2):89–98.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Koubova J, Guarente L. How does calorie restriction work? Genes Dev. 2003;17(3):313–21.CrossRefPubMedGoogle Scholar
  23. 23.
    Dang CV. Links between metabolism and cancer. Genes Dev. 2012;26(9):877–90.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Akaike H. A new look at the statistical model identification. Auto Contrl IEEE Trans. 1974;19(6):716–23.CrossRefGoogle Scholar
  25. 25.
    Wie G-A, Cho Y-A, Kang H-h, Ryu K-A, Yoo M-K, Kim Y-A et al. Red meat consumption is associated with an increased overall cancer risk: a prospective cohort study in Korea. British Journal of Nutrition. 2014:1-10Google Scholar
  26. 26.
    Zhu H, Yang X, Zhang C, Zhu C, Tao G, Zhao L, et al. Red and processed meat intake is associated with higher gastric cancer risk: a meta-analysis of epidemiological observational studies. PLoS One. 2013;8(8):e70955.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cai S, Li Y, Ding Y, Chen K, Jin M. Alcohol drinking and the risk of colorectal cancer death: a meta-analysis. Eur J Cancer Prev. 2014;23(6):532–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang W, Bailey-Wilson JE, Li W, Wang X, Zhang C, Mao X, et al. Segregation analysis of esophageal cancer in a moderately high-incidence area of Northern China. Am J Hum Genet. 2000;67(1):110–9.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Xu Z-Y, Blot WJ, Xiao H-P, Wu A, Feng Y-P, Stone B, et al. Smoking, air pollution, and the high rates of lung cancer in Shenyang, China. J Natl Cancer Inst. 1989;81(23):1800–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Wong B, Ching C, Lam S, Li Z, Chen B, Li Y, et al. Differential north to south gastric cancer-duodenal ulcer gradient in China. J Gastroenterol Hepatol. 1998;13(10):1050–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Siddiqi M, Preussmann R. Esophageal cancer in Kashmir—an assessment. J Cancer Res Clin Oncol. 1989;115(2):111–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Miwa H, Go MF, Sato N. H. pylori and gastric cancer: the Asian enigma. Am J Gastroenterol. 2002;97(5):1106–12.CrossRefPubMedGoogle Scholar
  33. 33.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.CrossRefPubMedGoogle Scholar
  34. 34.
    Curado M-P, Edwards B, Shin HR, Storm H, Ferlay J, Heanue M et al. Cancer incidence in five continents, volume IX. IARC Press, International Agency for Research on Cancer; 2007.Google Scholar
  35. 35.
    Nelson KE, Kmush B, Labrique AB. The epidemiology of hepatitis E virus infections in developed countries and among immunocompromised patients. 2011.Google Scholar
  36. 36.
    Forman D, de Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, et al. Global burden of human papillomavirus and related diseases. Vaccine. 2012;30:F12–23.CrossRefPubMedGoogle Scholar
  37. 37.
    Hunt R, Xiao S, Megraud F, Leon-Barua R, Bazzoli F, Van der Merwe S, et al. Helicobacter pylori in developing countries. World gastroenterology organisation global guideline. J Gastrointestin Liver Dis. 2011;20(3):299–304.PubMedGoogle Scholar
  38. 38.
    St-Hilaire S, Mannel S, Commendador A, Mandal R, Derryberry D. Research correlations between meteorological parameters and prostate cancer. 2010.Google Scholar
  39. 39.
    Stewart SL, King JB, Thompson TD, Friedman C, Wingo PA. Cancer mortality surveillance—United States, 1990–2000. MMWR Surveill Summ. 2004;53(3):1–108.PubMedGoogle Scholar
  40. 40.
    State-specific prevalence of cigarette smoking among adults and quitting among persons aged 18-35 years, United States, 2006. MMWR Morb Mortal Wkly Rep. 2007;56(38):993-6.Google Scholar
  41. 41.
    Dikshit R, Gupta PC, Ramasundarahettige C, Gajalakshmi V, Aleksandrowicz L, Badwe R, et al. Cancer mortality in India: a nationally representative survey. Lancet. 2012;379(9828):1807–16.CrossRefPubMedGoogle Scholar
  42. 42.
    Garland CF, Garland FC, Gorham ED, Lipkin M, Newmark H, Mohr SB, et al. The role of vitamin D in cancer prevention. Am J Public Health. 2006;96(2):252.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Grant WB, Mohr SB. Ecological studies of ultraviolet B, vitamin D and cancer since 2000. Ann Epidemiol. 2009;19(7):446–54.CrossRefPubMedGoogle Scholar
  44. 44.
    Garland CF, Garland FC. Do sunlight and vitamin D reduce the likelihood of colon cancer? Int J Epidemiol. 1980;9(3):227–31.CrossRefPubMedGoogle Scholar
  45. 45.
    Yin L, Grandi N, Raum E, Haug U, Arndt V, Brenner H. Meta-analysis: serum vitamin D and breast cancer risk. Eur J Cancer. 2010;46(12):2196–205.CrossRefPubMedGoogle Scholar
  46. 46.
    Lipworth L, Rossi M, McLaughlin J, Negri E, Talamini R, Levi F, et al. Dietary vitamin D and cancers of the oral cavity and esophagus. Ann Oncol. 2009;20(9):1576–81.CrossRefPubMedGoogle Scholar
  47. 47.
    Abnet CC, Chen W, Dawsey SM, Wei W-Q, Roth MJ, Liu B, et al. Serum 25 (OH)-vitamin D concentration and risk of esophageal squamous dysplasia. Cancer Epidemiol Biomark Prev. 2007;16(9):1889–93.CrossRefGoogle Scholar
  48. 48.
    Freedman DM, Looker AC, Chang S-C, Graubard BI. Prospective study of serum vitamin D and cancer mortality in the United States. J Natl Cancer Inst. 2007;99(21):1594–602.CrossRefPubMedGoogle Scholar
  49. 49.
    Giovannucci E. The epidemiology of vitamin D and cancer incidence and mortality: a review (United States). Cancer Causes Control. 2005;16(2):83–95.CrossRefPubMedGoogle Scholar
  50. 50.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA: Cancer J Clin. 2014;64(1):9–29.Google Scholar
  51. 51.
    De Gruijl F. Skin cancer and solar UV radiation. Eur J Cancer. 1999;35(14):2003–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Moan J, Porojnicu AC, Dahlback A, Setlow RB. Addressing the health benefits and risks, involving vitamin D or skin cancer, of increased sun exposure. Proc Natl Acad Sci. 2008;105(2):668–73.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Menendez JA, Alarcón T. Metabostemness: a new cancer hallmark. Frontiers in oncology. 2014;4.Google Scholar
  54. 54.
    Wellen KE, Thompson CB. Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell. 2010;40(2):323–32.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hursting SD, Lavigne JA, Berrigan D, Perkins SN, Barrett JC. Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans. Annu Rev Med. 2003;54(1):131–52.CrossRefPubMedGoogle Scholar
  56. 56.
    Hursting SD, Dunlap SM, Ford NA, Hursting MJ, Lashinger LM. Calorie restriction and cancer prevention: a mechanistic perspective. Cancer & Metabolism. 2013;1(10).Google Scholar
  57. 57.
    Kokolus KM, Capitano ML, Lee C-T, Eng JW-L, Waight JD, Hylander BL, et al. Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature. Proc Natl Acad Sci. 2013;110(50):20176–81.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Porojnicu A, Robsahm T, Ree AH, Moan J. Season of diagnosis is a prognostic factor in Hodgkin’s lymphoma: a possible role of sun-induced vitamin D. Br J Cancer. 2005;93(5):571–4.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lim HS, Roychoudhuri R, Peto J, Schwartz G, Baade P, Møller H. Cancer survival is dependent on season of diagnosis and sunlight exposure. Int J Cancer. 2006;119(7):1530–6.CrossRefPubMedGoogle Scholar
  60. 60.
    Du G, Zhao B, Zhang Y, Sun T, Liu W, Li J, et al. Hypothermia activates adipose tissue to promote malignant lung cancer progression. PLoS One. 2013;8(8):e72044.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Shi L, Fei X, Sun G, Wang Z, Wan Y, Zeng Y et al. Hypothermia stimulates glioma stem spheres to spontaneously dedifferentiate adjacent non-stem glioma cells. Cellular and Molecular Neurobiology. 2014:1-14.Google Scholar
  62. 62.
    Lehrer S, Rosenzweig KE. Cold climate is a risk factor for thyroid cancer. Clin Thyroidol. 2014;26(10):273–6.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lundgren K, Kjellstrom T. Sustainability challenges from climate change and air conditioning use in urban areas. Sustainability. 2013;5(7):3116–28.CrossRefGoogle Scholar
  64. 64.
    Sivak M. Will AC. Put a chill on the global energy supply? American Scientist. 2013;101(5).Google Scholar
  65. 65.
    Van Ooijen A, van Marken LW, Van Steenhoven A, Westerterp K. Seasonal changes in metabolic and temperature responses to cold air in humans. Physiol Behav. 2004;82(2):545–53.PubMedGoogle Scholar
  66. 66.
    Boulant JA. Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clin Infect Dis. 2000;31(Supplement 5):S157–S61.CrossRefPubMedGoogle Scholar
  67. 67.
    McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature. 2002;416(6876):52–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Sinha G. Homing in on the fat and cancer connection. Journal of the National Cancer Institute. 2012.Google Scholar
  69. 69.
    van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360(15):1500–8.CrossRefPubMedGoogle Scholar
  70. 70.
    Cao Q, Hersl J, La H, Smith M, Jenkins J, Goloubeva O, et al. A pilot study of FDG PET/CT detects a link between brown adipose tissue and breast cancer. BMC Cancer. 2014;14(1):126.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Martinez-Outschoorn UE, Lin Z, Trimmer C, Flomenberg N, Wang C, Pavlides S, et al. Cancer cells metabolically“ fertilize” the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors. Cell Cycle. 2011;10(15):2504–20.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Fujita J. Cold shock response in mammalian cells. J Mol Microbiol Biotechnol. 1999;1(2):243–55.PubMedGoogle Scholar
  73. 73.
    Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR. Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci. 2006;31(3):164–72.CrossRefPubMedGoogle Scholar
  74. 74.
    Sabnis AS, Shadid M, Yost GS, Reilly CA. Human lung epithelial cells express a functional cold-sensing TRPM8 variant. Am J Respir Cell Mol Biol. 2008;39(4):466–74.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Ankit Sharma
    • 1
  • Harphool Kumar Verma
    • 1
  • Savitri Joshi
    • 2
  • Mahaveer Singh Panwar
    • 2
  • Chandi C. Mandal
    • 1
  1. 1.Department of BiochemistryCentral University of RajasthanAjmerIndia
  2. 2.Department of StatisticsCentral University of RajasthanRajasthanIndia

Personalised recommendations