Tumor Biology

, Volume 36, Issue 3, pp 1403–1409 | Cite as

Potential role of miR-100 in cancer diagnosis, prognosis, and therapy

Review

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that function by base pairing with messenger RNAs, thereby regulating protein expression. Functional studies indicate that miRNAs are involved in the regulation of almost every biological pathway. Moreover, changes in miRNA expression are associated with several human pathologies, including cancer. Dysregulation and aberrant expression of microRNA-100 (miR-100) have been reported to be involved in tumorigenesis and tumor progression of several cancer types, suggesting that miR-100 might serve as a diagnostic and/or prognostic marker for human malignancy. In this review, we summarize the potential application of miR-100 in cancer treatment and as a new molecular marker for cancer prognosis and diagnosis. We will provide a brief introduction to miR-100 and discuss its role as a non-invasive biomarker and a potential therapeutic target in human cancers.

Keywords

Non-coding RNA miR-100 Human cancer Diagnostic Prognostic Biomarker 

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No.81272601, 81472198), the Key Clinical Medicine Technology Foundation of Jiangsu Province (No.BL2014096), the Medical Key Talented Person Foundation of the Jiangsu Provincial Developing Health Project (No.RC2011080), Innovation Team Project of the Second Affiliated Hospital of Nanjing Medical University (No.CX201202), and “333 high class Talented Man Project” (No.2011-III-2630).

References

  1. 1.
    Costa PM, Pedroso DLM. MicroRNAs as molecular targets for cancer therapy: on the modulation of microrna expression. Pharmaceuticals (Basel). 2013;6:1195–220.CrossRefGoogle Scholar
  2. 2.
    Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10:389–402.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dela CF, Matushansky I. MicroRNAs in chromosomal translocation-associated solid tumors: learning from sarcomas. Discov Med. 2011;12:307–17.Google Scholar
  4. 4.
    Hertel J, Bartschat S, Wintsche A, Otto C, Stadler PF. Evolution of the let-7 microRNA family. RNA Biol. 2012;9:231–41.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Heimberg AM, Sempere LF, Moy VN, Donoghue PC, Peterson KJ. MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci U S A. 2008;105:2946–50.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136:642–55.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell. 2001;106:23–34.CrossRefPubMedGoogle Scholar
  8. 8.
    Xu C, Zeng Q, Xu W, Jiao L, Chen Y, Zhang Z, et al. MiRNA-100 inhibits human bladder urothelial carcinogenesis by directly targeting mTOR. Mol Cancer Ther. 2013;12:207–19.CrossRefPubMedGoogle Scholar
  9. 9.
    Sun J, Chen Z, Tan X, Zhou F, Tan F, Gao Y, et al. MicroRNA-99a/100 promotes apoptosis by targeting mtor in human esophageal squamous cell carcinoma. Med Oncol. 2013;30:411.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhu Z, Wang CP, Zhang YF, Nie L. MicroRNA-100 resensitizes resistant chondrosarcoma cells to cisplatin through direct targeting of mTOR. Asian Pac J Cancer Prev. 2014;15:917–23.CrossRefPubMedGoogle Scholar
  11. 11.
    Huang JS, Egger ME, Grizzle WE, McNally LR. MicroRNA-100 regulates IGF1-receptor expression in metastatic pancreatic cancer cells. Biotech Histochem. 2013;88:397–402.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Li XJ, Luo XQ, Han BW, Duan FT, Wei PP, Chen YQ. MicroRNA-100/99a, deregulated in acute lymphoblastic leukaemia, suppress proliferation and promote apoptosis by regulating the FKBP51 and IGF1R/mTOR signalling pathways. Br J Cancer. 2013;109:2189–98.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gebeshuber CA, Martinez J. Mir-100 suppresses IGF2 and inhibits breast tumorigenesis by interfering with proliferation and survival signaling. Oncogene. 2013;32:3306–10.CrossRefPubMedGoogle Scholar
  14. 14.
    Chen Z, Jin Y, Yu D, Wang A, Mahjabeen I, Wang C, et al. Down-regulation of the microRNA-99 family members in head and neck squamous cell carcinoma. Oral Oncol. 2012;48:686–91.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Blick C, Ramachandran A, Wigfield S, McCormick R, Jubb A, Buffa FM, et al. Hypoxia regulates FGFR3 expression via HIF-1alpha and miR-100 and contributes to cell survival in non-muscle invasive bladder cancer. Br J Cancer. 2013;109:50–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tovar V, Alsinet C, Villanueva A, Hoshida Y, Chiang DY, Sole M, et al. IGF activation in a molecular subclass of hepatocellular carcinoma and pre-clinical efficacy of IGF-1R blockage. J Hepatol. 2010;52:550–9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Li BH, Zhou JS, Ye F, Cheng XD, Zhou CY, Lu WG, et al. Reduced miR-100 expression in cervical cancer and precursors and its carcinogenic effect through targeting PLK1 protein. Eur J Cancer. 2011;47:2166–74.CrossRefPubMedGoogle Scholar
  18. 18.
    Petrelli A, Perra A, Schernhuber K, Cargnelutti M, Salvi A, Migliore C, et al. Sequential analysis of multistage hepatocarcinogenesis reveals that miR-100 and PLK1 dysregulation is an early event maintained along tumor progression. Oncogene. 2012;31:4517–26.CrossRefPubMedGoogle Scholar
  19. 19.
    Feng B, Wang R, Chen LB. MiR-100 resensitizes docetaxel-resistant human lung adenocarcinoma cells (SPC-A1) to docetaxel by targeting PLK1. Cancer Lett. 2012;317:184–91.CrossRefPubMedGoogle Scholar
  20. 20.
    Shi W, Alajez NM, Bastianutto C, Hui AB, Mocanu JD, Ito E, et al. Significance of PLK1 regulation by miR-100 in human nasopharyngeal cancer. Int J Cancer. 2010;126:2036–48.PubMedGoogle Scholar
  21. 21.
    Liu J, Lu KH, Liu ZL, Sun M, De W, Wang ZX. MicroRNA-100 is a potential molecular marker of non-small cell lung cancer and functions as a tumor suppressor by targeting polo-like kinase 1. BMC Cancer. 2012;12:519.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mueller AC, Sun D, Dutta A. The miR-99 family regulates the DNA damage response through its target snf2h. Oncogene. 2013;32:1164–72.CrossRefPubMedGoogle Scholar
  23. 23.
    Huang J, Gao K, Lin J, Wang Q. MicroRNA-100 inhibits osteosarcoma cell proliferation by targeting Cyr61. Tumour Biol. 2014;35:1095–100.CrossRefPubMedGoogle Scholar
  24. 24.
    Zheng YS, Zhang H, Zhang XJ, Feng DD, Luo XQ, Zeng CW, et al. Mir-100 regulates cell differentiation and survival by targeting RBSP3, a phosphatase-like tumor suppressor in acute myeloid leukemia. Oncogene. 2012;31:80–92.CrossRefPubMedGoogle Scholar
  25. 25.
    Szabo DR, Luconi M, Szabo PM, Toth M, Szucs N, Horanyi J, et al. Analysis of circulating microRNAs in adrenocortical tumors. Lab Invest. 2014;94:331–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Wu C, Wang C, Guan X, Liu Y, Li D, Zhou X, et al. Diagnostic and prognostic implications of a serum miRNA panel in oesophageal squamous cell carcinoma. PLoS One. 2014;9:e92292.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI. Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res. 2008;14:2588–92.CrossRefPubMedGoogle Scholar
  28. 28.
    Torres A, Torres K, Pesci A, Ceccaroni M, Paszkowski T, Cassandrini P, et al. Deregulation of miR-100, miR-99a and miR-199b in tissues and plasma coexists with increased expression of mTOR kinase in endometrioid endometrial carcinoma@@. BMC Cancer. 2012;12:369.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cazzoli R, Buttitta F, Di Nicola M, Malatesta S, Marchetti A, Rom WN, et al. MicroRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer. J Thorac Oncol. 2013;8:1156–62.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ratert N, Meyer HA, Jung M, Lioudmer P, Mollenkopf HJ, Wagner I, et al. MiRNA profiling identifies candidate miRNAs for bladder cancer diagnosis and clinical outcome. J Mol Diagn. 2013;15:695–705.CrossRefPubMedGoogle Scholar
  31. 31.
    Oliveira JC, Brassesco MS, Morales AG, Pezuk JA, Fedatto PF, Da SG, et al. MicroRNA-100 acts as a tumor suppressor in human bladder carcinoma 5637 cells. Asian Pac J Cancer Prev. 2011;12:3001–4.PubMedGoogle Scholar
  32. 32.
    Dip N, Reis ST, Timoszczuk LS, Viana NI, Piantino CB, Morais DR, et al. Stage, grade and behavior of bladder urothelial carcinoma defined by the microRNA expression profile. J Urol. 2012;188:1951–6.CrossRefPubMedGoogle Scholar
  33. 33.
    LaConti JJ, Shivapurkar N, Preet A, Deslattes MA, Peran I, Kim SE, et al. Tissue and serum microRNAs in the kras (g12d) transgenic animal model and in patients with pancreatic cancer. PLoS One. 2011;6:e20687.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Luo D, Wilson JM, Harvel N, Liu J, Pei L, Huang S, et al. A systematic evaluation of miRNA:mRNA interactions involved in the migration and invasion of breast cancer cells. J Transl Med. 2013;11:57.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhong S, Li W, Chen Z, Xu J, Zhao J. MiR-222 and miR-29a contribute to the drug-resistance of breast cancer cells. Gene. 2013;531:8–14.CrossRefPubMedGoogle Scholar
  36. 36.
    Peng DX, Luo M, Qiu LW, He YL, Wang XF. Prognostic implications of microRNA-100 and its functional roles in human epithelial ovarian cancer. Oncol Rep. 2012;27:1238–44.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Ng WL, Yan D, Zhang X, Mo YY, Wang Y. Over-expression of miR-100 is responsible for the low-expression of ATM in the human glioma cell line: M059J. DNA Repair (Amst). 2010;9:1170–5.CrossRefGoogle Scholar
  38. 38.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhou J, Song T, Gong S, Zhong M, Su G. MicroRNA regulation of the expression of the estrogen receptor in endometrial cancer. Mol Med Rep. 2010;3:387–92.PubMedGoogle Scholar
  40. 40.
    Vriens MR, Weng J, Suh I, Huynh N, Guerrero MA, Shen WT, et al. MicroRNA expression profiling is a potential diagnostic tool for thyroid cancer. Cancer. 2012;118:3426–32.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang C, Wang C, Chen X, Yang C, Li K, Wang J, et al. Expression profile of microRNAs in serum: a fingerprint for esophageal squamous cell carcinoma. Clin Chem. 2010;56:1871–9.CrossRefPubMedGoogle Scholar
  42. 42.
    de Oliveira JC, Scrideli CA, Brassesco MS, Morales AG, Pezuk JA, Queiroz RP, et al. Differential miRNA expression in childhood acute lymphoblastic leukemia and association with clinical and biological features. Leuk Res. 2012;36:293–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Huang L, Lin JX, Yu YH, Zhang MY, Wang HY, Zheng M. Downregulation of six microRNAs is associated with advanced stage, lymph node metastasis and poor prognosis in small cell carcinoma of the cervix. PLoS One. 2012;7:e33762.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Leite KR, Tomiyama A, Reis ST, Sousa-Canavez JM, Sanudo A, Camara-Lopes LH, et al. MicroRNA expression profiles in the progression of prostate cancer—from high-grade prostate intraepithelial neoplasia to metastasis. Urol Oncol. 2013;31:796–801.CrossRefPubMedGoogle Scholar
  45. 45.
    Wang S, Xue S, Dai Y, Yang J, Chen Z, Fang X, et al. Reduced expression of microRNA-100 confers unfavorable prognosis in patients with bladder cancer. Diagn Pathol. 2012;7:159.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Chen J, Zheng B, Wang C, Chen Y, Du C, Zhao G, et al. Prognostic role of microRNA-100 in various carcinomas: evidence from six studies. Tumour Biol. 2013;35(4):3067–71.CrossRefPubMedGoogle Scholar
  47. 47.
    Leite KR, Sousa-Canavez JM, Reis ST, Tomiyama AH, Camara-Lopes LH, Sanudo A, et al. Change in expression of miR-let7c, miR-100, and miR-218 from high grade localized prostate cancer to metastasis. Urol Oncol. 2011;29:265–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Leite KR, Tomiyama A, Reis ST, Sousa-Canavez JM, Sanudo A, Dall’Oglio MF, et al. MicroRNA-100 expression is independently related to biochemical recurrence of prostate cancer. J Urol. 2011;185:1118–22.CrossRefPubMedGoogle Scholar
  49. 49.
    Chang L, Graham PH, Hao J, Bucci J, Cozzi PJ, Kearsley JH, et al. Emerging roles of radioresistance in prostate cancer metastasis and radiation therapy. Cancer Metastasis Rev. 2014;33(2–3):469–96.CrossRefPubMedGoogle Scholar
  50. 50.
    Wang M, Ren D, Guo W, Wang Z, Huang S, Du H, et al. Loss of miR-100 enhances migration, invasion, epithelial-mesenchymal transition and stemness properties in prostate cancer cells through targeting argonaute 2. Int J Oncol. 2014;45:362–72.PubMedGoogle Scholar
  51. 51.
    Brennan P, Hainaut P, Boffetta P. Genetics of lung-cancer susceptibility. Lancet Oncol. 2011;12:399–408.CrossRefPubMedGoogle Scholar
  52. 52.
    Goldstraw P, Ball D, Jett JR, Le Chevalier T, Lim E, Nicholson AG, et al. Non-small-cell lung cancer. Lancet. 2011;378:1727–40.CrossRefPubMedGoogle Scholar
  53. 53.
    Xiao F, Bai Y, Chen Z, Li Y, Luo L, Huang J, et al. Downregulation of HOXA1 gene affects small cell lung cancer cell survival and chemoresistance under the regulation of miR-100. Eur J Cancer. 2014;50(8):1541–54.CrossRefPubMedGoogle Scholar
  54. 54.
    Zhang Y, Shi ZL, Yang X, Yin ZF. Targeting of circulating hepatocellular carcinoma cells to prevent postoperative recurrence and metastasis. World J Gastroenterol. 2014;20:142–7.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Chen P, Zhao X, Ma L. Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in hepatocellular carcinoma. Mol Cell Biochem. 2013;383:49–58.CrossRefPubMedGoogle Scholar
  56. 56.
    Zhang H, Luo XQ, Zhang P, Huang LB, Zheng YS, Wu J, et al. MicroRNA patterns associated with clinical prognostic parameters and CNS relapse prediction in pediatric acute leukemia. PLoS One. 2009;4:e7826.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Bai J, Guo A, Hong Z, Kuai W. Upregulation of microRNA-100 predicts poor prognosis in patients with pediatric acute myeloid leukemia. Onco Targets Ther. 2012;5:213–9.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Nagaraja AK, Creighton CJ, Yu Z, Zhu H, Gunaratne PH, Reid JG, et al. A link between miR-100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol. 2010;24:447–63.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Deng L, Shang L, Bai S, Chen J, He X, Trevino RM, et al. MicroRNA100 inhibits self-renewal of breast cancer stem-like cells and breast tumor development. Cancer Res. 2014;74(22):6648–60.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Chen P, Xi Q, Wang Q, Wei P. Downregulation of microRNA-100 correlates with tumor progression and poor prognosis in colorectal cancer. Med Oncol. 2014;31:235.CrossRefPubMedGoogle Scholar
  61. 61.
    Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137:1005–17.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Li Z, Li X, Yu C, Wang M, Peng F, Xiao J, et al. MicroRNA-100 regulates pancreatic cancer cells growth and sensitivity to chemotherapy through targeting FGFR3. Tumour Biol. 2014;35(12):11751–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Bera A, VenkataSubbaRao K, Manoharan MS, Hill P, Freeman JW. A miRNA signature of chemoresistant mesenchymal phenotype identifies novel molecular targets associated with advanced pancreatic cancer. PLoS One. 2014;9:e106343.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Clinical MedicineThe First Medical college of Nanjing Medical UniversityNanjingPeople’s Republic of China
  2. 2.Department of OncologyThe Second Affiliated Hospital, Nanjing Medical UniversityNanjingPeople’s Republic of China

Personalised recommendations