Tumor Biology

, Volume 36, Issue 8, pp 5773–5783 | Cite as

Tobacco carcinogen-metabolizing genes CYP1A1, GSTM1, and GSTT1 polymorphisms and their interaction with tobacco exposure influence the risk of head and neck cancer in Northeast Indian population

  • Javed Hussain Choudhury
  • Seram Anil Singh
  • Sharbadeb Kundu
  • Biswadeep Choudhury
  • Fazlur R. Talukdar
  • Shilpee Srivasta
  • Ruhina S. Laskar
  • Bishal Dhar
  • Raima Das
  • Shaheen Laskar
  • Manish Kumar
  • Wetetsho Kapfo
  • Rosy Mondal
  • Sankar Kumar Ghosh
Research Article


Genetic polymorphisms in tobacco-metabolizing genes may modulate the risk of head and neck cancer (HNC). In Northeast India, head and neck cancers and tobacco consumption remains most prevalent. The aim of the study was to investigate the combined effect of cytochrome P450 1A1 (CYP1A1) T3801C, glutathione S-transferases (GSTs) genes polymorphisms and smoking and tobacco–betel quid chewing in the risk of HNC. The study included 420 subjects (180 cases and 240 controls) from Northeast Indian population. Polymorphisms of CYP1A1 T3801C and GST (M1 & T1) were studied by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) and multiplex PCR, respectively. Logistic regression (LR) and multifactor dimensionality reduction (MDR) approach were applied for statistical analysis. LR analysis revealed that subjects carrying CYP1A1 TC/CC + GSTM1 null genotypes had 3.52-fold (P < 0.001) increase the risk of head and neck squamous cell carcinoma (HNSCC). Smokers carrying CYP1A1 TC/CC + GSTM1 null and CYP1A1 TC/CC + GSTT1 null genotypes showed significant association with HNC risk (odds ratio [OR] = 6.42; P < 0.001 and 3.86; P = 0.005, respectively). Similarly, tobacco–betel quid chewers carrying CYP1A1 TC/CC + GSTM1 null genotypes also had several fold increased risk of HNC (P < 0.001). In MDR analysis, the best model for HNSCC risk was the four-factor model of tobacco–betel quid chewing, smoking, CYP1A1 TC/CC, and GSTM1 null genotypes (testing balance accuracy [TBA] = 0.6292; cross-validation consistency [CVC] = 9/10 and P < 0.0001). These findings suggest that interaction of combined genotypes of carcinogen-metabolizing genes with environmental factors might modulate susceptibility of HNC in Northeast Indian population.


Head and neck cancer CYP1A1 GSTM1 GSTT1 Tobacco MDR analysis 



We are grateful to the Department of Biotechnology (DBT), Government of India, for providing financial support. Our sincere thanks also go to Cachar Cancer Hospital and Research Centre (CCHRC), Assam; Silchar Medical College and Hospital (SMC), Assam; Agartala Government Medical College, Tripura and Naga Hospital Administration, Nagaland; RIMS, Manipur; Civil Hospital, Mizoram; and BBCRI, Assam.

Conflicts of interest



  1. 1.
    Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57(1):43–66.CrossRefPubMedGoogle Scholar
  2. 2.
    Kim L, King T, Agulnik M. Head and neck cancer: changing epidemiology and public health implications. Oncology (Williston Park). 2010;24(10):915–24.PubMedGoogle Scholar
  3. 3.
    Choudhury B, Srivastava S, Choudhury HH, Purkayastha A, DuttaGupta S, Ghosh SK. Arginase and C-reactive protein as potential serum-based biomarker of head and neck squamous cell carcinoma patients of north east India. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(7):6739–48. doi: 10.1007/s13277-014-1851-y.CrossRefGoogle Scholar
  4. 4.
    Bhattacharjee A, Chakraborty A, Purkaystha P. Prevalence of head and neck cancers in the north east—an institutional study. Indian J otolaryngol Head Neck Surg Off Publ Assoc Otolaryngol India. 2006;58(1):15–9. doi: 10.1007/BF02907731.Google Scholar
  5. 5.
    Vineis P. The relationship between polymorphisms of xenobiotic metabolizing enzymes and susceptibility to cancer. Toxicology. 2002;181–182:457–62.CrossRefPubMedGoogle Scholar
  6. 6.
    Gonzalez FJ. The molecular biology of cytochrome P450s. Pharmacol Rev. 1988;40(4):243–88.PubMedGoogle Scholar
  7. 7.
    Vondracek M, Xi Z, Larsson P, Baker V, Mace K, Pfeifer A, et al. Cytochrome P450 expression and related metabolism in human buccal mucosa. Carcinogenesis. 2001;22(3):481–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Guengerich FP, Kim DH, Iwasaki M. Role of human cytochrome P-450 I.E. in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol. 1991;4(2):168–79.CrossRefPubMedGoogle Scholar
  9. 9.
    Nebert DW, Dalton TP. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer. 2006;6(12):947–60. doi: 10.1038/nrc2015.CrossRefPubMedGoogle Scholar
  10. 10.
    Soya SS, Vinod T, Reddy KS, Gopalakrishnan S, Adithan C. Genetic polymorphisms of glutathione-S-transferase genes (GSTM1, GSTT1 and GSTP1) and upper aerodigestive tract cancer risk among smokers, tobacco chewers and alcoholics in an Indian population. Eur J Cancer. 2007;43(18):2698–706. doi: 10.1016/j.ejca.2007.07.006.CrossRefPubMedGoogle Scholar
  11. 11.
    Garte S. The role of ethnicity in cancer susceptibility gene polymorphisms: the example of CYP1A1. Carcinogenesis. 1998;19(8):1329–32.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev. 2009;41(2):89–295. doi: 10.1080/03602530902843483.CrossRefPubMedGoogle Scholar
  13. 13.
    Shah PP, Saurabh K, Pant MC, Mathur N, Parmar D. Evidence for increased cytochrome P450 1A1 expression in blood lymphocytes of lung cancer patients. Mutat Res. 2009;670(1–2):74–8. doi: 10.1016/j.mrfmmm.2009.07.006.CrossRefPubMedGoogle Scholar
  14. 14.
    McIlwain CC, Townsend DM, Tew KD. Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene. 2006;25(11):1639–48. doi: 10.1038/sj.onc.1209373.CrossRefPubMedGoogle Scholar
  15. 15.
    Mondal R, Ghosh SK, Choudhury JH, Seram A, Sinha K, Hussain M, et al. Mitochondrial DNA copy number and risk of oral cancer: a report from Northeast India. PLoS One. 2013;8(3):e57771. doi: 10.1371/journal.pone.0057771.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Singh M, Shah PP, Singh AP, Ruwali M, Mathur N, Pant MC, et al. Association of genetic polymorphisms in glutathione S-transferases and susceptibility to head and neck cancer. Mutat Res. 2008;638(1–2):184–94. doi: 10.1016/j.mrfmmm.2007.10.003.CrossRefPubMedGoogle Scholar
  17. 17.
    Anantharaman D, Chaubal PM, Kannan S, Bhisey RA, Mahimkar MB. Susceptibility to oral cancer by genetic polymorphisms at CYP1A1, GSTM1 and GSTT1 loci among Indians: tobacco exposure as a risk modulator. Carcinogenesis. 2007;28(7):1455–62. doi: 10.1093/carcin/bgm038.CrossRefPubMedGoogle Scholar
  18. 18.
    Singh AP, Shah PP, Ruwali M, Mathur N, Pant MC, Parmar D. Polymorphism in cytochrome P4501A1 is significantly associated with head and neck cancer risk. Cancer Investig. 2009;27(8):869–76. doi: 10.1080/07357900902849657.CrossRefGoogle Scholar
  19. 19.
    Peng J, Liu HZ, Zhu YJ. Null glutathione S-transferase T1 and M1 genotypes and oral cancer susceptibility in China and India—a meta-analysis. Asian Pac J Cancer Prev APJCP. 2014;15(1):287–90.CrossRefPubMedGoogle Scholar
  20. 20.
    Masood N, Yasmin A, Kayani MA. Genetic deletions of GSTM1 and GSTT1 in head and neck cancer: review of the literature from 2000 to 2012. Asian Pac J Cancer Prev APJCP. 2013;14(6):3535–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Choudhury JH, Ghosh SK. Gene-environment interaction and susceptibility in head and neck cancer patients and in their first-degree relatives: a study of Northeast Indian population. J Oral Pathol Med Off Publ Int Assoc Oral Pathol Am Acad Oral Pathol. 2014. doi: 10.1111/jop.12249.Google Scholar
  22. 22.
    Choudhury JH, Choudhury B, Kundu S, Ghosh SK. Combined effect of tobacco and DNA repair genes polymorphisms of XRCC1 and XRCC2 influence high risk of head and neck squamous cell carcinoma in northeast Indian population. Med Oncol. 2014;31(8):67. doi: 10.1007/s12032-014-0067-8.CrossRefPubMedGoogle Scholar
  23. 23.
    Chen J, Cheng M, Yi L, Jiang CB. Relationship between CYP1A1 genetic polymorphisms and renal cancer in China. Asian Pac J Cancer Prev APJCP. 2011;12(9):2163–6.PubMedGoogle Scholar
  24. 24.
    Mondal R, Ghosh SK, Talukdar FR, Laskar RS. Association of mitochondrial D-loop mutations with GSTM1 and GSTT1 polymorphisms in oral carcinoma: a case control study from northeast India. Oral Oncol. 2013;49(4):345–53. doi: 10.1016/j.oraloncology.2012.11.003.CrossRefPubMedGoogle Scholar
  25. 25.
    Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics. 2003;19(3):376–82.CrossRefPubMedGoogle Scholar
  26. 26.
    Cattaert T, Calle ML, Dudek SM, Mahachie John JM, Van Lishout F, Urrea V, et al. Model-based multifactor dimensionality reduction for detecting epistasis in case–control data in the presence of noise. Ann Hum Genet. 2011;75(1):78–89. doi: 10.1111/j.1469-1809.2010.00604.x.CrossRefPubMedGoogle Scholar
  27. 27.
    Ritchie MD, Hahn LW, Moore JH. Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet Epidemiol. 2003;24(2):150–7. doi: 10.1002/gepi.10218.CrossRefPubMedGoogle Scholar
  28. 28.
    Manuguerra M, Matullo G, Veglia F, Autrup H, Dunning AM, Garte S, et al. Multi-factor dimensionality reduction applied to a large prospective investigation on gene-gene and gene-environment interactions. Carcinogenesis. 2007;28(2):414–22. doi: 10.1093/carcin/bgl159.CrossRefPubMedGoogle Scholar
  29. 29.
    Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96(6):434–42.CrossRefPubMedGoogle Scholar
  30. 30.
    Talukdar FR, Ghosh SK, Laskar RS, Mondal R. Epigenetic, genetic and environmental interactions in esophageal squamous cell carcinoma from northeast India. PLoS One. 2013;8(4):e60996. doi: 10.1371/journal.pone.0060996.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Olivieri EH, da Silva SD, Mendonca FF, Urata YN, Vidal DO, Faria Mde A, et al. CYP1A2*1C, CYP2E1*5B, and GSTM1 polymorphisms are predictors of risk and poor outcome in head and neck squamous cell carcinoma patients. Oral Oncol. 2009;45(9):e73–9. doi: 10.1016/j.oraloncology.2009.03.004.CrossRefPubMedGoogle Scholar
  32. 32.
    Gattas GJ, de Carvalho MB, Siraque MS, Curioni OA, Kohler P, Eluf-Neto J, et al. Genetic polymorphisms of CYP1A1, CYP2E1, GSTM1, and GSTT1 associated with head and neck cancer. Head Neck. 2006;28(9):819–26. doi: 10.1002/hed.20410.CrossRefPubMedGoogle Scholar
  33. 33.
    Hiyama T, Yoshihara M, Tanaka S, Chayama K. Genetic polymorphisms and head and neck cancer risk (Review). Int J Oncol. 2008;32(5):945–73.PubMedGoogle Scholar
  34. 34.
    Boccia S, Cadoni G, Sayed-Tabatabaei FA, Volante M, Arzani D, De Lauretis A, et al. CYP1A1, CYP2E1, GSTM1, GSTT1, EPHX1 exons 3 and 4, and NAT2 polymorphisms, smoking, consumption of alcohol and fruit and vegetables and risk of head and neck cancer. J Cancer Res Clin Oncol. 2008;134(1):93–100. doi: 10.1007/s00432-007-0254-5.CrossRefPubMedGoogle Scholar
  35. 35.
    Shaffi SM, Shah MA, Bhat IA, Koul P, Ahmad SN, Siddiqi MA. CYP1A1 polymorphisms and risk of lung cancer in the ethnic Kashmiri population. Asian Pac J Cancer Prev APJCP. 2009;10(4):651–6.PubMedGoogle Scholar
  36. 36.
    Shen FF, Zhou FY, Xue QS, Pan Y, Zheng L, Zhang H, et al. Association between CYP1A1 polymorphisms and esophageal cancer: a meta-analysis. Mol Biol Rep. 2013;40(10):6035–42. doi: 10.1007/s11033-013-2713-1.CrossRefPubMedGoogle Scholar
  37. 37.
    Lourenco GJ, Silva EF, Rinck-Junior JA, Chone CT, Lima CS. CYP1A1, GSTM1 and GSTT1 polymorphisms, tobacco and alcohol status and risk of head and neck squamous cell carcinoma. Tumour Biol J Int Soc Oncodev Biol Med. 2011;32(6):1209–15. doi: 10.1007/s13277-011-0224-z.CrossRefGoogle Scholar
  38. 38.
    Suzen HS, Guvenc G, Turanli M, Comert E, Duydu Y, Elhan A. The role of GSTM1 and GSTT1 polymorphisms in head and neck cancer risk. Oncol Res. 2007;16(9):423–9.PubMedGoogle Scholar
  39. 39.
    Wei Y, Zhou T, Lin H, Sun M, Wang D, Li H, et al. Significant associations between GSTM1/GSTT1 polymorphisms and nasopharyngeal cancer risk. Tumour Biol J Int Soc Oncodev Biol Med. 2013;34(2):887–94. doi: 10.1007/s13277-012-0623-9.CrossRefGoogle Scholar
  40. 40.
    Sharma A, Mishra A, Das BC, Sardana S, Sharma JK. Genetic polymorphism at GSTM1 and GSTT1 gene loci and susceptibility to oral cancer. Neoplasma. 2006;53(4):309–15.PubMedGoogle Scholar
  41. 41.
    Biselli JM. de Angelo Calsaverini Leal RC, Ruiz MT, Goloni-Bertollo EM, Maniglia JV, Rossit AR et al. GSTT1 and GSTM1 polymorphism in cigarette smokers with head and neck squamous cell carcinoma. Brazilian J Otorhinolaryngol. 2006;72(5):654–8.CrossRefGoogle Scholar
  42. 42.
    Sharma R, Ahuja M, Panda NK, Khullar M. Combined effect of smoking and polymorphisms in tobacco carcinogen-metabolizing enzymes CYP1A1 and GSTM1 on the head and neck cancer risk in North Indians. DNA Cell Biol. 2010;29(8):441–8. doi: 10.1089/dna.2009.1016.CrossRefPubMedGoogle Scholar
  43. 43.
    Sam SS, Thomas V, Reddy SK, Surianarayanan G, Chandrasekaran A. CYP1A1 polymorphisms and the risk of upper aerodigestive tract cancers in an Indian population. Head Neck. 2008;30(12):1566–74. doi: 10.1002/hed.20897.CrossRefPubMedGoogle Scholar
  44. 44.
    Chatterjee S, Chakrabarti S, Sengupta B, Poddar S, Biswas D, Sengupta S, et al. Prevalence of CYP1A1 and GST polymorphisms in the population of northeastern India and susceptibility of oral cancer. Oncol Res. 2009;17(9):397–403.CrossRefPubMedGoogle Scholar
  45. 45.
    Sam SS, Thomas V, Reddy KS, Surianarayanan G, Chandrasekaran A. Gene-environment interactions associated with CYP1A1 MspI and GST polymorphisms and the risk of upper aerodigestive tract cancers in an Indian population. J Cancer Res Clin Oncol. 2010;136(6):945–51. doi: 10.1007/s00432-009-0738-6.CrossRefPubMedGoogle Scholar
  46. 46.
    Sabitha K, Reddy MV, Jamil K. Smoking related risk involved in individuals carrying genetic variants of CYP1A1 gene in head and neck cancer. Cancer Epidemiol. 2010;34(5):587–92. doi: 10.1016/j.canep.2010.05.002.CrossRefPubMedGoogle Scholar
  47. 47.
    Gronau S, Koenig-Greger D, Jerg M, Riechelmann H. Gene polymorphisms in detoxification enzymes as susceptibility factor for head and neck cancer? Otolaryngology—head and neck surgery: official journal of American Academy of Otolaryngology-Head and Neck. Surgery. 2003;128(5):674–80.Google Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Javed Hussain Choudhury
    • 1
  • Seram Anil Singh
    • 1
  • Sharbadeb Kundu
    • 1
  • Biswadeep Choudhury
    • 1
  • Fazlur R. Talukdar
    • 1
  • Shilpee Srivasta
    • 1
  • Ruhina S. Laskar
    • 1
  • Bishal Dhar
    • 1
  • Raima Das
    • 1
  • Shaheen Laskar
    • 1
  • Manish Kumar
    • 1
  • Wetetsho Kapfo
    • 1
  • Rosy Mondal
    • 1
  • Sankar Kumar Ghosh
    • 1
  1. 1.Molecular Medicine Laboratory, Department of BiotechnologyAssam UniversitySilcharIndia

Personalised recommendations