Tumor Biology

, Volume 36, Issue 8, pp 5763–5771 | Cite as

Ceramide production mediates cinobufotalin-induced growth inhibition and apoptosis in cultured hepatocellular carcinoma cells

  • Long Cheng
  • Yuan-zheng Chen
  • Yi Peng
  • Nan Yi
  • Xin-shi Gu
  • Yong Jin
  • Xu-ming Bai
Research Article


Hepatocellular carcinoma (HCC) is a highly aggressive and lethal neoplasm with poor prognosis. The aim of this study is to investigate the anticancer activity of cinobufotalin, a bufadienolide isolated from toad venom, in cultured HCC cells, and to study the underlying mechanisms. We found that cinobufotalin (at nmol/L) significantly inhibited HCC cell growth and survival while inducing considerable cell apoptosis. Further, cinobufotalin inhibited sphingosine kinase 1 (SphK1) activity and induced pro-apoptotic ceramide production. Ceramide synthase-1 small hairpin RNA (shRNA)-depletion inhibited cinobufotalin-induced ceramide production and HCC cell apoptosis. On the other hand, the glucosylceramide synthase (GCS) inhibitor 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) facilitated cinobufotalin-induced ceramide production and cell apoptosis. SphK1 inhibitor II (SKI-II), similar to cinobufotalin, increased cellular ceramide level and promoted HCC cell apoptosis. Finally, we observed that cinobufotalin inactivated Akt-S6K1 signaling in HepG2 cells, which was again inhibited by ceramide synthase-1 shRNA-depletion. In conclusion, the results of this study suggest that cinobufotalin induces growth inhibition and apoptosis in cultured HCC cells through ceramide production. Cinobufotalin may be investigated as a novel anti-HCC agent.


Hepatocellular carcinoma Cinobufotalin Apoptosis SphK1 and ceramide 



Ceramide synthase 1


Hepatocellular carcinoma


Sphingosine kinase 1



This work was supported by the National Natural Science Foundation.

Conflicts of interest



  1. 1.
    Tsanou E, Ioachim E, Stefaniotou M, Gorezis S, Charalabopoulos K, Bagli H, et al. Immunohistochemical study of angiogenesis and proliferative activity in epiretinal membranes. Int J Clin Pract. 2005;59:1157–61.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhou P, Zhao MW, Li XX, Yu WZ, Bian ZM. Sirna targeting mammalian target of rapamycin (mtor) attenuates experimental proliferative vitreoretinopathy. Curr Eye Res. 2007;32:973–84.CrossRefPubMedGoogle Scholar
  3. 3.
    Seeliger H, Guba M, Kleespies A, Jauch KW, Bruns CJ. Role of mtor in solid tumor systems: a therapeutical target against primary tumor growth, metastases, and angiogenesis. Cancer Metastasis Rev. 2007;26:611–21.CrossRefPubMedGoogle Scholar
  4. 4.
    Lewis GP, Chapin EA, Byun J, Luna G, Sherris D, Fisher SK. Muller cell reactivity and photoreceptor cell death are reduced after experimental retinal detachment using an inhibitor of the akt/mtor pathway. Invest Ophthalmol Vis Sci. 2009;50:4429–35.CrossRefPubMedGoogle Scholar
  5. 5.
    Emam H, Zhao QL, Furusawa Y, Refaat A, Ahmed K, Kadowaki M, et al. Apoptotic cell death by the novel natural compound, cinobufotalin. Chem Biol Interact. 2012;199:154–60.CrossRefPubMedGoogle Scholar
  6. 6.
    Li Z, Gao H, Wang J, Qu T, Chen L, Wang Z, et al. Inhibitory effect of total bufadienolides from toad venom against h22 tumor in mice and their metabolites. Zhongguo Zhong Yao Za Zhi. 2011;36:2987–93.PubMedGoogle Scholar
  7. 7.
    Ogretmen B, Hannun YA. Updates on functions of ceramide in chemotherapy-induced cell death and in multidrug resistance. Drug Resist Updat. 2001;4:368–77.CrossRefPubMedGoogle Scholar
  8. 8.
    Reynolds CP, Maurer BJ, Kolesnick RN. Ceramide synthesis and metabolism as a target for cancer therapy. Cancer Lett. 2004;206:169–80.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhu QY, Wang Z, Ji C, Cheng L, Yang YL, Ren J, et al. C6-ceramide synergistically potentiates the anti-tumor effects of histone deacetylase inhibitors via akt dephosphorylation and alpha-tubulin hyperacetylation both in vitro and in vivo. Cell Death Dis. 2011;2:e117.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kai S, Lu JH, Hui PP, Zhao H. Pre-clinical evaluation of cinobufotalin as a potential anti-lung cancer agent. Biochem Biophys Res Commun. 2014;452:768–74.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang YM, Zhang ZQ, Liu YY, Zhou X, Shi XH, Jiang Q, et al. Requirement of galphai1/3-gab1 signaling complex for keratinocyte growth factor-induced pi3k-akt-mtorc1 activation. J Invest Dermatol. 2015;135:181–91.CrossRefPubMedGoogle Scholar
  12. 12.
    Yang L, Zheng LY, Tian Y, Zhang ZQ, Dong WL, Wang XF, Zhang XY, Cao C. C6 ceramide dramatically enhances docetaxel-induced growth inhibition and apoptosis in cultured breast cancer cells: a mechanism study. Exp Cell Res 2015.Google Scholar
  13. 13.
    Yu T, Li J, Sun H. C6 ceramide potentiates curcumin-induced cell death and apoptosis in melanoma cell lines in vitro. Cancer Chemother Pharmacol. 2010;66:999–1003.CrossRefPubMedGoogle Scholar
  14. 14.
    Taipale J, Beachy PA. The hedgehog and wnt signalling pathways in cancer. Nature. 2001;411:349–54.CrossRefPubMedGoogle Scholar
  15. 15.
    Altura BM, Shah NC, Shah GJ, Zhang A, Li W, Zheng T, et al. Short-term mg deficiency upregulates protein kinase c isoforms in cardiovascular tissues and cells; relation to nf-kb, cytokines, ceramide salvage sphingolipid pathway and pkc-zeta: hypothesis and review. Int J Clin Exp Med. 2014;7:1–21.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Gong L, Yang B, Xu M, Cheng B, Tang X, Zheng P, et al. Bortezomib-induced apoptosis in cultured pancreatic cancer cells is associated with ceramide production. Cancer Chemother Pharmacol. 2014;73:69–77.CrossRefPubMedGoogle Scholar
  17. 17.
    Merrill Jr AH, van Echten G, Wang E, Sandhoff K. Fumonisin b1 inhibits sphingosine (sphinganine) n-acyltransferase and de novo sphingolipid biosynthesis in cultured neurons in situ. J Biol Chem. 1993;268:27299–306.PubMedGoogle Scholar
  18. 18.
    Soriano JM, Gonzalez L, Catala AI. Mechanism of action of sphingolipids and their metabolites in the toxicity of fumonisin b1. Prog Lipid Res. 2005;44:345–56.CrossRefPubMedGoogle Scholar
  19. 19.
    Yao C, Wei JJ, Wang ZY, Ding HM, Li D, Yan SC, Yang YJ, Gu ZP. Perifosine induces cell apoptosis in human osteosarcoma cells: new implication for osteosarcoma therapy? Cell Biochem Biophys 2012.Google Scholar
  20. 20.
    Ichihashi M. Uv-induced skin damage and photo-allergic disease. Arerugi. 2007;56:670–8.PubMedGoogle Scholar
  21. 21.
    Chen JS, Wang Q, Fu XH, Huang XH, Chen XL, Cao LQ, et al. Involvement of pi3k/pten/akt/mtor pathway in invasion and metastasis in hepatocellular carcinoma: association with mmp-9. Hepatol Res. 2009;39:177–86.CrossRefPubMedGoogle Scholar
  22. 22.
    Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology. 2008;48:1312–27.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ogretmen B, Hannun YA. Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer. 2004;4:604–16.CrossRefPubMedGoogle Scholar
  24. 24.
    Mathias S, Pena LA, Kolesnick RN. Signal transduction of stress via ceramide. Biochem J. 1998;335(Pt 3):465–80.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Veldman RJ, Klappe K, Hoekstra D, Kok JW. Metabolism and apoptotic properties of elevated ceramide in ht29rev cells. Biochem J. 1998;331(Pt 2):563–9.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Babia T, Veldman RJ, Hoekstra D, Kok JW. Modulation of carcinoembryonic antigen release by glucosylceramide–implications for ht29 cell differentiation. Eur J Biochem. 1998;258:233–42.CrossRefPubMedGoogle Scholar
  27. 27.
    Bose R, Verheij M, Haimovitz-Friedman A, Scotto K, Fuks Z, Kolesnick R. Ceramide synthase mediates daunorubicin-induced apoptosis: an alternative mechanism for generating death signals. Cell. 1995;82:405–14.CrossRefPubMedGoogle Scholar
  28. 28.
    Jaffrezou JP, Levade T, Bettaieb A, Andrieu N, Bezombes C, Maestre N, et al. Daunorubicin-induced apoptosis: triggering of ceramide generation through sphingomyelin hydrolysis. EMBO J. 1996;15:2417–24.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Myrick D, Blackinton D, Klostergaard J, Kouttab N, Maizel A, Wanebo H, et al. Paclitaxel-induced apoptosis in jurkat, a leukemic t cell line, is enhanced by ceramide. Leuk Res. 1999;23:569–78.CrossRefPubMedGoogle Scholar
  30. 30.
    Yu T, Li J, Qiu Y, Sun H. 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (pdmp) facilitates curcumin-induced melanoma cell apoptosis by enhancing ceramide accumulation, jnk activation, and inhibiting pi3k/akt activation. Mol Cell Biochem. 2011;361:47–54.CrossRefPubMedGoogle Scholar
  31. 31.
    Dijkhuis AJ, Klappe K, Jacobs S, Kroesen BJ, Kamps W, Sietsma H, et al. Pdmp sensitizes neuroblastoma to paclitaxel by inducing aberrant cell cycle progression leading to hyperploidy. Mol Cancer Ther. 2006;5:593–601.CrossRefPubMedGoogle Scholar
  32. 32.
    Sietsma H, Veldman RJ, Kolk D, Ausema B, Nijhof W, Kamps W, et al. 1-phenyl-2-decanoylamino-3-morpholino-1-propanol chemosensitizes neuroblastoma cells for taxol and vincristine. Clin Cancer Res. 2000;6:942–8.PubMedGoogle Scholar
  33. 33.
    Vadas M, Xia P, McCaughan G, Gamble J. The role of sphingosine kinase 1 in cancer: oncogene or non-oncogene addiction? Biochim Biophys Acta. 2008;1781:442–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Shida D, Takabe K, Kapitonov D, Milstien S, Spiegel S. Targeting sphk1 as a new strategy against cancer. Curr Drug Targets. 2008;9:662–73.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Maceyka M, Harikumar KB, Milstien S, Spiegel S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol. 2012;22:50–60.CrossRefPubMedGoogle Scholar
  36. 36.
    Stevenson CE, Takabe K, Nagahashi M, Milstien S, Spiegel S. Targeting sphingosine-1-phosphate in hematologic malignancies. Anticancer Agents Med Chem. 2011;11:794–8.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bao M, Chen Z, Xu Y, Zhao Y, Zha R, Huang S, et al. Sphingosine kinase 1 promotes tumour cell migration and invasion via the s1p/edg1 axis in hepatocellular carcinoma. Liver Int. 2012;32:331–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Hay N. The akt-mtor tango and its relevance to cancer. Cancer Cell. 2005;8:179–83.CrossRefPubMedGoogle Scholar
  39. 39.
    Tanaka S, Arii S. Molecular targeted therapies in hepatocellular carcinoma. Semin Oncol. 2012;39:486–92.CrossRefPubMedGoogle Scholar
  40. 40.
    Newell P, Villanueva A, Llovet JM. Molecular targeted therapies in hepatocellular carcinoma: from pre-clinical models to clinical trials. J Hepatol. 2008;49:1–5.CrossRefPubMedGoogle Scholar
  41. 41.
    Altomare DA, Testa JR. Perturbations of the akt signaling pathway in human cancer. Oncogene. 2005;24:7455–64.CrossRefPubMedGoogle Scholar
  42. 42.
    Dobrowsky RT, Kamibayashi C, Mumby MC, Hannun YA. Ceramide activates heterotrimeric protein phosphatase 2a. J Biol Chem. 1993;268:15523–30.PubMedGoogle Scholar
  43. 43.
    Law B, Rossie S. The dimeric and catalytic subunit forms of protein phosphatase 2a from rat brain are stimulated by c2-ceramide. J Biol Chem. 1995;270:12808–13.CrossRefPubMedGoogle Scholar
  44. 44.
    Wolff RA, Dobrowsky RT, Bielawska A, Obeid LM, Hannun YA. Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J Biol Chem. 1994;269:19605–9.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Interventional RadiologyThe Second Affiliated Hospital of Soochow University, Soochow UniversitySuzhouChina
  2. 2.Department of Burn SurgeryThe Linyi People’s HospitalLinyiChina
  3. 3.Department of RadiotherapyHubei Cancer HospitalWuhanChina
  4. 4.Department of Hand and Foot SurgeryThe Second Affiliated Hospital of Soochow University, Soochow UniversitySuzhouChina

Personalised recommendations