Advertisement

Tumor Biology

, Volume 36, Issue 3, pp 1385–1394 | Cite as

Molecular mechanism underlying the tumor-promoting functions of carcinoma-associated fibroblasts

Review

Abstract

Tumor microenvironment is composed of all the untransformed elements in the vicinity of tumor, mainly including a large number of stromal cells and extracellular matrix proteins, which play an active role in most solid tumor initiation and progression. Carcinoma-associated fibroblasts (CAFs), one of the most common stromal cell types in the tumor microenvironment, have been demonstrated to be involved in tumor growth, invasion, and metastasis. Therefore, they are becoming a promising target for anti-cancer therapies. In this review, we firstly summarize the current understandings of CAFs’ molecular biology, including the heterogeneous cellular origins and molecular markers, and then, we focus on reviewing their various tumor-promoting phenotypes involved in complex mechanisms, which can be summarized to the CAF-conveyed paracrine signals in tumor cells, cancer stem cells, and metastasis-initiating cancer cells, as well as the CAF-enhanced extrinsic tumor-promoting processes including angiogenesis, extracellular matrix remodeling, and tumor-related inflammation; finally, we describe the available directions of CAF-based target therapy and suggest research areas which need to be further explored so as to deepen the understanding of tumor evolution and provide new therapeutic targets for cancer treatment.

Keywords

Carcinoma-associated fibroblasts (CAFs) Cancer stem cells (CSCs) Extracellular matrix remodeling Angiogenesis Tumor-related inflammation 

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81402299, 81372334).

Conflicts of interest

None

References

  1. 1.
    Togo S, Polanska U, Horimoto Y, Orimo A. Carcinoma-associated fibroblasts are a promising therapeutic target. Cancers. 2013;5:149–69.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Madar S, Goldstein I, Rotter V. ‘Cancer associated fibroblasts’—more than meets the eye. Trends Mol Med. 2013;19:447–53.CrossRefPubMedGoogle Scholar
  3. 3.
    Paulsson J, Micke P. Prognostic relevance of cancer-associated fibroblasts in human cancer. Semin Cancer Biol. 2014;25:61–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Mueller L, Goumas FA, Affeldt M, Sandtner S, Gehling UM, Brilloff S, et al. Stromal fibroblasts in colorectal liver metastases originate from resident fibroblasts and generate an inflammatory microenvironment. Am J Pathol. 2007;171:1608–18.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lawrenson K, Grun B, Lee N, Mhawech-Fauceglia P, Kan J, Swenson S, et al. NPPB is a novel candidate biomarker expressed by cancer-associated fibroblasts in epithelial ovarian cancer. Int J Cancer. 2014. doi: 10.1002/ijc.29092.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Alspach E, Fu Y, Stewart SA. Senescence and the pro-tumorigenic stroma. Crit Rev Oncog. 2013;18:549–58.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Peng Y, Li Z, Yang P, Newton IP, Ren H, Zhang L, et al. Direct contacts with colon cancer cells regulate the differentiation of bone marrow mesenchymal stem cells into tumor associated fibroblasts. Biochem Biophys Res Commun. 2014;451:68–73.CrossRefPubMedGoogle Scholar
  8. 8.
    Petersen OW, Nielsen HL, Gudjonsson T, Villadsen R, Rank F, Niebuhr E, et al. Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am J Pathol. 2003;162:391–402.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zeisberg EM, Potenta S, Xie L, Zeisberg M, Kalluri R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 2007;67:10123–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Bochet L, Lehuede C, Dauvillier S, Wang YY, Dirat B, Laurent V, et al. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 2013;73:5657–68.CrossRefPubMedGoogle Scholar
  11. 11.
    Ren S, Duffield JS. Pericytes in kidney fibrosis. Curr Opin Nephrol Hypertens. 2013;22:471–80.CrossRefPubMedGoogle Scholar
  12. 12.
    Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401.CrossRefPubMedGoogle Scholar
  13. 13.
    Sugimoto H, Mundel TM, Kieran MW, Kalluri R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther. 2006;5:1640–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Fearon DT. The carcinoma-associated fibroblast expressing fibroblast activation protein and escape from immune surveillance. Cancer Immunol Res. 2014;2:187–93.CrossRefPubMedGoogle Scholar
  15. 15.
    Dano K, Behrendt N, Hoyer-Hansen G, Johnsen M, Lund LR, Ploug M, et al. Plasminogen activation and cancer. Thromb Haemost. 2005;93:676–81.PubMedGoogle Scholar
  16. 16.
    Underwood TJ, Hayden AL, Derouet M, Garcia E, Noble F, White MJ, et al. Cancer associated fibroblasts predict for poor outcome and promote periostin-dependent invasion in oesophageal adenocarcinoma. J Pathol. 2014. doi: 10.1002/path.4467.Google Scholar
  17. 17.
    O’Connell JT, Sugimoto H, Cooke VG, MacDonald BA, Mehta AI, LeBleu VS, et al. VEGF-A and Tenascin-C produced by S100A4+ stromal cells are important for metastatic colonization. Proc Natl Acad Sci. 2011;108:16002–7.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Brentnall TA, Lai LA, Coleman J, Bronner MP, Pan S, Chen R. Arousal of cancer-associated stroma: overexpression of palladin activates fibroblasts to promote tumor invasion. PLoS ONE. 2012;7:e30219.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Inoue H, Tsuchiya H, Miyazaki Y, Kikuchi K, Ide F, Sakashita H, et al. Podoplanin expressing cancer-associated fibroblasts in oral cancer. Tumor Biol. 2014;35:11345–52.CrossRefGoogle Scholar
  20. 20.
    Mercier I, Casimiro MC, Wang C, Rosenberg AL, Quong J, Minkeu A, et al. Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 downregulation and RB tumor suppressor functional inactivation: Implications for the response to hormonal therapy. Cancer Biol Ther. 2008;7:1212–25.CrossRefPubMedGoogle Scholar
  21. 21.
    Tlsty TD. Stromal cells can contribute oncogenic signals. Semin Cancer Biol. 2001;11:97–104.CrossRefPubMedGoogle Scholar
  22. 22.
    Berdiel-Acer M, Sanz-Pamplona R, Calon A, Cuadras D, Berenguer A, Sanjuan X, et al. Differences between CAFs and their paired NCF from adjacent colonic mucosa reveal functional heterogeneity of CAFs, providing prognostic information. Mol Oncol. 2014;8:1290–305.CrossRefPubMedGoogle Scholar
  23. 23.
    Bae JY, Kim EK, Yang DH, Zhang X, Park Y, Lee DY, et al. Reciprocal interaction between carcinoma-associated fibroblasts and squamous carcinoma cells through interleukin-1α induces cancer progression. Neoplasia. 2014;16:928–38.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Räsänen K, Vaheri A. Activation of fibroblasts in cancer stroma. Exp Cell Res. 2010;316:2713–22.CrossRefPubMedGoogle Scholar
  25. 25.
    Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22.CrossRefPubMedGoogle Scholar
  26. 26.
    Pietras K, Östman A. Hallmarks of cancer: Interactions with the tumor stroma. Exp Cell Res. 2010;316:1324–31.CrossRefPubMedGoogle Scholar
  27. 27.
    Hanahan D, Weinberg RA. Hallmarks of cancer: The Next Generation. Cell. 2011;144:646–74.CrossRefPubMedGoogle Scholar
  28. 28.
    Lin J, Liu C, Ge L, Gao Q, He X, Liu Y, et al. Carcinoma-associated fibroblasts promotes the proliferation of a lingual carcinoma cell line by secreting keratinocyte growth factor. Tumor Biol. 2011;32:597–602.CrossRefGoogle Scholar
  29. 29.
    Liao CP, Adisetiyo H, Liang M, Roy-Burman P. Cancer-associated fibroblasts enhance the gland-forming capability of prostate cancer stem cells. Cancer Res. 2010;70:7294–303.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011;17:320–9.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Rattigan YI, Patel BB, Ackerstaff E, Sukenick G, Koutcher JA, Glod JW, et al. Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment. Exp Cell Res. 2012;318:326–35.CrossRefPubMedGoogle Scholar
  32. 32.
    Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, et al. Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci. 2010;107:20009–14.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bailey JM, Swanson BJ, Hamada T, Eggers JP, Singh PK, Caffery T, et al. Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res. 2008;14:5995–6004.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gonda TA, Varro A, Wang TC, Tycko B. Molecular biology of cancer-associated fibroblasts: can these cells be targeted in anti-cancer therapy? Semin Cell Dev Biol. 2010;21:2–10.CrossRefPubMedGoogle Scholar
  35. 35.
    Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–48.CrossRefPubMedGoogle Scholar
  36. 36.
    Jung D, Che ZM, Kim J, Kim K, Kim K, Williams D, et al. Tumor-stromal crosstalk in invasion of oral squamous cell carcinoma: a pivotal role of CCL7. Int J Cancer. 2010;127:332–44.PubMedGoogle Scholar
  37. 37.
    Henriksson ML, Edin S, Dahlin AM, Oldenborg P, Öberg Å, Van Guelpen B, et al. Colorectal cancer cells activate adjacent fibroblasts resulting in FGF1/FGFR3 signaling and increased invasion. Am J Pathol. 2011;178:1387–94.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    He X, Tao H, Hu Z, Ma Y, Xu J, Wang H, et al. Expression of galectin-1 in carcinoma-associated fibroblasts promotes gastric cancer cell invasion through upregulation of integrin β1. Cancer Sci. 2014;105:1402–10.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012;151:1542–56.CrossRefPubMedGoogle Scholar
  40. 40.
    Tian H, Callahan CA, DuPree KJ, Darbonne WC, Ahn CP, Scales SJ, et al. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci U S A. 2009;106:4254–9.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wilkinson SE, Furic L, Buchanan G, Larsson O, Pedersen J, Frydenberg M, et al. Hedgehog signaling is active in human prostate cancer stroma and regulates proliferation and differentiation of adjacent epithelium. Prostate. 2013;73:1810–23.CrossRefPubMedGoogle Scholar
  42. 42.
    Vermeulen L, De Sousa E, Melo F, van der Heijden M, Cameron K, de Jong JH, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12:468–76.CrossRefPubMedGoogle Scholar
  43. 43.
    Tsuyada A, Chow A, Wu J, Somlo G, Chu P, Loera S, et al. CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res. 2012;72:2768–79.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Chen WJ, Ho CC, Chang YL, Chen HY, Lin CA, Ling TY, et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 2014;5:3472.PubMedGoogle Scholar
  45. 45.
    Zhou B, Chen W, Wang Y, Lin Z, Zhang D, Fan S, et al. A role for cancer-associated fibroblasts in inducing the epithelial-to-mesenchymal transition in human tongue squamous cell carcinoma. J Oral Pathol Med. 2014;43:585–92.CrossRefPubMedGoogle Scholar
  46. 46.
    Giannoni E, Bianchini F, Masieri L, Serni S, Torre E, Calorini L, et al. Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res. 2010;70:6945–56.CrossRefPubMedGoogle Scholar
  47. 47.
    Fiaschi T, Giannoni E, Taddei ML, Cirri P, Marini A, Pintus G, et al. Carbonic anhydrase IX from cancer-associated fibroblasts drives epithelial-mesenchymal transition in prostate carcinoma cells. Cell Cycle. 2013;12:1791–801.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Oskarsson T, Massagué J. Extracellular matrix players in metastatic niches. EMBO J. 2012;31:254–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr H, Delaloye J, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2011;481:85–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med. 2011;17:867–74.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Saupe F, Schwenzer A, Jia Y, Gasser I, Spenle C, Langlois B, et al. Tenascin-C downregulates wnt inhibitor dickkopf-1, promoting tumorigenesis in a neuroendocrine tumor model. Cell Rep. 2013;5:482–92.CrossRefPubMedGoogle Scholar
  52. 52.
    Wang S, Ma N, Kawanishi S, Hiraku Y, Oikawa S, Xie Y, et al. Relationships of alpha-SMA-positive fibroblasts and SDF-1-positive tumor cells with neoangiogenesis in nasopharyngeal carcinoma. Biomed Res Int. 2014;2014:1–9.Google Scholar
  53. 53.
    Noma K, Smalley KSM, Lioni M, Naomoto Y, Tanaka N, El Deiry W, et al. The essential role of fibroblasts in esophageal squamous cell carcinoma-induced angiogenesis. Gastroenterology. 2008;134:1981–93.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Nagasaki T, Hara M, Nakanishi H, Takahashi H, Sato M, Takeyama H. Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour–stroma interaction. Brit J Cancer. 2013;110:469–78.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Augsten M, Hagglof C, Olsson E, Stolz C, Tsagozis P, Levchenko T, et al. CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proc Natl Acad Sci U S A. 2009;106:3414–9.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Xue Y, Lim S, Yang Y, Wang Z, Jensen L, Hedlund E, et al. PDGF-BB modulates hematopoiesis and tumor angiogenesis by inducing erythropoietin production in stromal cells. Nat Med. 2011;18:100–10.CrossRefPubMedGoogle Scholar
  57. 57.
    Wallace JA, Li F, Balakrishnan S, Cantemir-Stone CZ, Pecot T, Martin C, et al. Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer. PLoS ONE. 2013;8:e71533.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Almholt K, Johnsen M. Stromal cell involvement in cancer. Recent Results Cancer Res. 2003;162:31–42.CrossRefPubMedGoogle Scholar
  59. 59.
    Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25:9–34.CrossRefPubMedGoogle Scholar
  60. 60.
    Carey SP, Kraning-Rush CM, Williams RM, Reinhart-King CA. Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials. 2012;33:4157–65.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kharaishvili G, Simkova D, Bouchalova K, Gachechiladze M, Narsia N, Bouchal J. The role of cancer-associated fibroblasts, solid stress and other microenvironmental factors in tumor progression and therapy resistance. Cancer Cell Int. 2014;14:41.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Sanz-Moreno V, Gaggioli C, Yeo M, Albrengues J, Wallberg F, Viros A, et al. ROCK and JAK1 signaling cooperate to control actomyosin contractility in tumor cells and stroma. Cancer Cell. 2011;20:229–45.CrossRefPubMedGoogle Scholar
  63. 63.
    Goicoechea SM, García-Mata R, Staub J, Valdivia A, Sharek L, McCulloch CG, et al. Palladin promotes invasion of pancreatic cancer cells by enhancing invadopodia formation in cancer-associated fibroblasts. Oncogene. 2013;33:1265–73.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 2013;15:637–46.CrossRefPubMedGoogle Scholar
  65. 65.
    Goetz JG, Minguet S, Navarro-Lérida I, Lazcano JJ, Samaniego R, Calvo E, et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell. 2011;146:148–63.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Fitzpatrick FA. Inflammation, carcinogenesis and cancer. Int Immunopharmacol. 2001;1:1651–67.CrossRefPubMedGoogle Scholar
  67. 67.
    Erez N, Glanz S, Raz Y, Avivi C, Barshack I. Cancer associated fibroblasts express pro-inflammatory factors in human breast and ovarian tumors. Biochem Biophys Res Commun. 2013;437:397–402.CrossRefPubMedGoogle Scholar
  68. 68.
    Kogan-Sakin I, Cohen M, Paland N, Madar S, Solomon H, Molchadsky A, et al. Prostate stromal cells produce CXCL-1, CXCL-2, CXCL-3 and IL-8 in response to epithelia-secreted IL-1. Carcinogenesis. 2009;30:698–705.CrossRefPubMedGoogle Scholar
  69. 69.
    Maxwell PJ, Neisen J, Messenger J, Waugh DJ. Tumor-derived CXCL8 signaling augments stroma-derived CCL2-promoted proliferation and CXCL12-mediated invasion of PTEN-deficient prostate cancer cells. Oncotarget. 2014;5:4895–908.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Servais C, Erez N. From sentinel cells to inflammatory culprits: cancer-associated fibroblasts in tumour-related inflammation. J Pathol. 2013;229:198–207.CrossRefPubMedGoogle Scholar
  71. 71.
    Comito G, Giannoni E, Segura CP, Barcellos-de-Souza P, Raspollini MR, Baroni G, et al. Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene. 2014;33:2423–31.CrossRefPubMedGoogle Scholar
  72. 72.
    Ellem SJ, Taylor RA, Furic L, Larsson O, Frydenberg M, Pook D, et al. A pro-tumourigenic loop at the human prostate tumour interface orchestrated by oestrogen, CXCL12 and mast cell recruitment. J Pathol. 2014;234:86–98.CrossRefPubMedGoogle Scholar
  73. 73.
    Ksiazkiewicz M, Gottfried E, Kreutz M, Mack M, Hofstaedter F, Kunz-Schughart LA. Importance of CCL2-CCR2A/2B signaling for monocyte migration into spheroids of breast cancer-derived fibroblasts. Immunobiology. 2010;215:737–47.CrossRefPubMedGoogle Scholar
  74. 74.
    De Monte L, Reni M, Tassi E, Clavenna D, Papa I, Recalde H, et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med. 2011;208:469–78.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Mace TA, Ameen Z, Collins A, Wojcik S, Mair M, Young GS, et al. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res. 2013;73:3007–18.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Giannelli G, Villa E, Lahn M. Transforming growth factor-β as a therapeutic target in hepatocellular carcinoma. Cancer Res. 2014;74:1890–4.CrossRefPubMedGoogle Scholar
  77. 77.
    Stylianopoulos T, Martin JD, Chauhan VP, Jain SR, Diop-Frimpong B, Bardeesy N, et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc Natl Acad Sci. 2012;109:15101–8.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Poplawski SE, Lai JH, Li Y, Jin Z, Liu Y, Wu W, et al. Identification of selective and potent inhibitors of fibroblast activation protein and prolyl oligopeptidase. J Med Chem. 2013;56:3467–77.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Brennen WN, Rosen DM, Wang H, Isaacs JT, Denmeade SR. Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug. JNCI J Nat Cancer Inst. 2012;104:1320–34.CrossRefPubMedGoogle Scholar
  80. 80.
    Gottschalk S, Yu F, Ji M, Kakarla S, Song X. A vaccine that co-targets tumor cells and cancer associated fibroblasts results in enhanced antitumor activity by inducing antigen spreading. PLoS ONE. 2013;8:e82658.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Stresemann C, Brueckner B, Musch T, Stopper H, Lyko F. Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines. Cancer Res. 2006;66:2794–800.CrossRefPubMedGoogle Scholar
  82. 82.
    Bhowmick NA, Chytil A, Chytil D, Gorska AE, Dumont N, Shappell S, et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science. 2004;303:848–51.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of OncologyJinan Central Hospital, Shandong UniversityJinanChina
  2. 2.Department of SurgeryJinan Central Hospital, Shandong UniversityJinanChina

Personalised recommendations