Tumor Biology

, Volume 36, Issue 3, pp 1355–1365 | Cite as

MiR-139-5p: promising biomarker for cancer

  • He-da Zhang
  • Lin-hong Jiang
  • Da-wei Sun
  • Jian Li
  • Jin-hai Tang
Review

Abstract

MicroRNAs (miRNAs) were reported to be associated with cancer progression and carcinogenesis. MiRNAs are small, highly conserved, small non-coding RNA molecules, consisting of 18–25 nucleotides that control gene expression at the post-transcription level. By binding to complementary binding sites within the 3′ untranslated region (3′UTR) of target messenger RNAs (mRNAs), inhibiting translation or promoting degradation of mRNAs. MicroRNAs not only play an important part in regulating gene expression but also controlling diverse physiological and pathological processes. Similarly, several studies have demonstrated that miRNAs have been involved in regulating various biological processes, including apoptosis, proliferation, cellular differentiation, metabolism, signal transduction, and carcinogenesis. MiRNA-139, which is located in 11q13.4 and has anti-oncogenic and antimetastatic activity in humans, meanwhile, was identified to be downregulated in previous studies. However, based on the pathogenetic relationship between cancer and the role of miR-139-5p in tumorigenesis, we consider that miR-139-5p may be the candidates to serve as promising biomarkers with sufficient sensitivity and specificity for the diagnosis of cancer in a clinical setting; moreover, it would offer a new safe and effective way in further molecular targeting cancer treatment, as well as improving overall survival of patients.

Keywords

MicroRNA MiR-139-5p Biomarker Cancer 

Notes

Acknowledgment

This work was supported by grants from the National Natural Science Foundation of China (81272470).

Conflicts of interest

None

References

  1. 1.
    Krishnan K, Steptoe AL, Martin HC, Pattabiraman DR, Nones K, Waddell N, et al. miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA. 2013;19(12):1767–80.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chan LS, Yue PY, Wong YY, et al. MicroRNA-15b contributes to ginsenoside-Rg1-induced angiogenesis through increased expression of VEGFR-2. Biochem Pharmacol. 2013;86(3):392–400.CrossRefPubMedGoogle Scholar
  3. 3.
    Bao L, Hazari S, Mehra S, et al. Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298. Am J Pathol. 2012;180(6):2490–503.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Wang H, Tan G, Dong L, et al. Circulating MiR-125b as a marker predicting chemoresistance in breast cancer. PLoS One. 2012;7(4):e34210.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Liang Z, Li Y, Huang K, et al. Regulation of miR-19 to breast cancer chemoresistance through targeting PTEN. Pharm Res. 2011;28(12):3091–100.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zhao R, Wu J, Jia W, et al. Plasma miR-221 as a predictive biomarker for chemoresistance in breast cancer patients who previously received neoadjuvant chemotherapy. Onkologie. 2011;34(12):675–80.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhao G, Zhou X, Fang T, Hou Y, Hu Y. Hyaluronic acid promotes the expression of progesterone receptor membrane component 1 via epigenetic silencing of miR-139-5p in granulosa cells. Biol Reprod. 2014;17.Google Scholar
  8. 8.
    Wong CC, Wong CM, Tung EK, Au SL, Lee JM, Poon RT, et al. The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rho-kinase 2. Gastroenterology. 2011;140:322–31.CrossRefPubMedGoogle Scholar
  9. 9.
    Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009;24:652–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Rask L, Balslev E, Søkilde R, Høgdall E, Flyger H, Eriksen J, et al. Differential expression of miR-139, miR-486 and miR-21 in breast cancer patients sub-classified according to lymph node status. Cell Oncol (Dordr). 2014;37(3):215–27.CrossRefGoogle Scholar
  11. 11.
    Corbetta S, Vaira V, Guarnieri V, Scillitani A, Eller-Vainicher C, Ferrero S, et al. Differential expression of microRNAs in human parathyroid carcinomas compared with normal parathyroid tissue. Endocr Relat Cancer. 2010;17(1):135–46.CrossRefPubMedGoogle Scholar
  12. 12.
    Sand M, Skrygan M, Sand D, Georgas D, Hahn SA, Gambichler T, et al. Expression of microRNAs in basal cell carcinoma. Br J Dermatol. 2012;167(4):847–55.CrossRefPubMedGoogle Scholar
  13. 13.
    Dallas NA, Xia L, Fan F, Gray MJ, Gaur P, van Buren G, et al. Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res. 2009;69:1951–7.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hiroki E, Akahira J, Suzuki F, Nagase S, Ito K, Suzuki T, et al. Changes in microRNA expression levels correlate with clinicopathological features and prognoses in endometrial serous adenocarcinomas. Cancer Sci. 2010;101:241–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Liu S, Xie L, Qi B, Ma C, Sang L, Li H. Differential expression profiles of microRNAs/mRNA and docking study in oral squamous cell carcinoma. Hua Xi Kou Qiang Yi Xue Za Zhi. 2014;32(4):400–3.PubMedGoogle Scholar
  16. 16.
    Wong TS, Liu XB, Wong BY, et al. Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res. 2008;14:2588–92.CrossRefPubMedGoogle Scholar
  17. 17.
    Schepeler T, Holm A, Halvey P, Nordentoft I, Lamy P, Riising EM, et al. Attenuation of the beta-catenin/TCF4 complex in colorectal cancer cells induces several growth-suppressive microRNAs that target cancer promoting genes. Oncogene. 2012;31(22):2750–60.CrossRefPubMedGoogle Scholar
  18. 18.
    Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149:1192–205.CrossRefPubMedGoogle Scholar
  19. 19.
    Shen K, Mao R, Ma L, Li Y, Qiu Y, Cui D, et al. Post-transcriptional regulation of the tumor suppressor miR-139-5p and a network of miR-139-5p-mediated mRNA interactions in colorectal cancer. FEBS J. 2014;281(16):3609–24.CrossRefPubMedGoogle Scholar
  20. 20.
    Chrzanowska-Wodnicka M, Kraus AE, Gale D, Vansluys J. Defective angiogenesis, endothelial migration, proliferation, and MAPK signaling in RAP1B-deficient mice. Blood. 2008;111:2647–56.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Stork PJ. Does RAP1 deserve a bad RAP? Trends Biochem Sci. 2003;28:267–75.CrossRefPubMedGoogle Scholar
  22. 22.
    Veenbergen S, van Spriel AB. Tetraspanins in the immune response against cancer. Immunol Lett. 2011;138:129–36.CrossRefPubMedGoogle Scholar
  23. 23.
    Dietz KN, Miller PJ, Hollenbach AD. Phosphorylation of serine 205 by the protein kinase CK2 persists on Pax3-FOXO1, but not Pax3, throughout early myogenic differentiation. Biochemistry. 2009;48:11786–95.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005;24:7410–25.CrossRefPubMedGoogle Scholar
  25. 25.
    van der Vos KE, Coffer PJ. FOXO-binding partners: it takes two to tango. Oncogene. 2008;27:2289–99.CrossRefPubMedGoogle Scholar
  26. 26.
    Jia AY, Castillo-Martin M, Domingo-Domenech J, Bonal DM, Sánchez-Carbayo M, Silva JM, et al. A common microRNA signature consisting of miR-133a, miR-139-3p, and miR-142-3p clusters bladder carcinoma in situ with normal umbrella cells. Am J Pathol. 2013;182(4):1171–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Liu R, Yang M, Meng Y, Liao J, Sheng J, Pu Y, et al. Tumor-suppressive function of miR-139-5p in esophageal squamous cell carcinoma. PLoS One. 2013;8(10).Google Scholar
  28. 28.
    Guo H, Hu X, Ge S, Qian G, Zhang J. Regulation of RAP1B by miR-139 suppresses human colorectal carcinoma cell proliferation. Int J Biochem Cell Biol. 2012;44(9):1465–72.CrossRefPubMedGoogle Scholar
  29. 29.
    Shen K, Liang Q, Xu K, Cui D, Jiang L, Yin P, et al. MiR-139 inhibits invasion and metastasis of colorectal cancer by targeting the type I insulin-like growth factor receptor. Biochem Pharmacol. 2012;84(3):320–30.CrossRefPubMedGoogle Scholar
  30. 30.
    Chen WX, Hu Q, Qiu MT, Zhong SL, Xu JJ. Tang JH, miR-221/222: promising biomarkers for breast cancer. Tumour Biol. 2013;34(3):1361–70.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang L, Dong Y, Zhu N, Tsoi H, Zhao Z, Wu CW, et al. microRNA-139-5p exerts tumor suppressor function by targeting NOTCH1 in colorectal cancer. Mol Cancer. 2014;13:124.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Li RY, Chen LC, Zhang HY, Du WZ, Feng Y, Wang HB, et al. MiR-139 inhibits Mcl-1 expression and potentiates TMZ-induced apoptosis in glioma. CNS Neurosci Ther. 2013;19(7):477–83.CrossRefPubMedGoogle Scholar
  33. 33.
    Tokino T, Nakamura Y. The role of p53-target genes in human cancer. Crit Rev Oncol Hematol. 2000;33:1–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Cheng WL, Lin TY, Tseng YH, Chu FH, Chueh PJ, Kuo YH. Inhibitory effect of human breast cancer cell proliferation via p21-mediated G (1) cell cycle arrest by Araliadiol isolated from Aralia cordata Thunb. Planta Med. 2011;77:164–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Broude EV, Swift ME, Vivo C, Chang BD, Davis BM, Kalurupalle S, et al. P21(Waf1/Cip1/Sdi1) mediates retinoblastoma protein degradation. Oncogene. 2007;26:6954–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Mitrea DM, Yoon MK, Ou L, Kriwacki RW. Disorder-function relationships for the cell cycle regulatory proteins p21 and p27. Biol Chem. 2012;393:259–74.CrossRefPubMedGoogle Scholar
  37. 37.
    Botrugno OA, Fayard E, Annicotte JS, Haby C, Brennan T, et al. Synergy between LRH-1 and beta-catenin induces G1 cyclin-mediated cell proliferation. Mol Cell. 2004;15:499–509.CrossRefPubMedGoogle Scholar
  38. 38.
    Wagner RT, Xu X, Yi F, Merrill BJ, Cooney AJ. Canonical Wnt/betacatenin regulation of liver receptor homolog-1 mediates pluripotency gene expression. Stem Cells. 2010;28:1794–804.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wang S, Lan F, Huang L, Dong L, Zhu Z, et al. Suppression of hLRH-1 mediated by a DNA vector-based RNA interference results in cell cycle arrest and induction of apoptosis in hepatocellular carcinoma cell BEL-7402. Biochem Biophys Res Commun. 2005;333:917–24.CrossRefPubMedGoogle Scholar
  40. 40.
    Selivanova G. p53: fighting cancer. Curr Cancer Drug Targets. 2004;4:385–402.CrossRefPubMedGoogle Scholar
  41. 41.
    Molchadsky A, Rivlin N, Brosh R, Rotter V, Sarig R. p53 is balancing development, differentiation and de-differentiation to assure cancer prevention. Carcinogenesis. 2010;31:1501–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Yamashita H, Nishio M, Toyama T, Sugiura H, Zhang Z, Kobayashi S, et al. Coexistence of HER2 over-expression and p53 protein accumulation is a strong prognostic molecular marker in breast cancer. Breast Cancer Res. 2004;6:R24–30.CrossRefPubMedGoogle Scholar
  43. 43.
    Bao W, Fu HJ, Xie QS, Wang L, Zhang R, Guo ZY, et al. HER2 interacts with CD44 to upregulate CXCR4 via epigenetic silencing of microRNA-139 in gastric cancer cells. Gastroenterology. 2011;141(6):2076–87.CrossRefPubMedGoogle Scholar
  44. 44.
    Kothapalli D, Zhao L, Hawthorne EA, Cheng Y, Lee E, Pure E, et al. Hyaluronan and CD44 antagonize mitogen-dependent cyclin D1 expression in mesenchymal cells. J Cell Biol. 2007;176:535–44.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Peluso JJ, Liu X, Gawkowska A, Lodde V, Wu CA. Progesterone inhibits apoptosis in part by PGRMC1-regulated gene expression. Mol Cell Endocrinol. 2010;320:153–61.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Mansouri MR, Schuster J, Badhai J, Stattin EL, Losel R, Wehling M, et al. Alterations in the expression, structure and function of progesterone receptor membrane component-1 (PGRMC1) in premature ovarian failure. Hum Mol Genet. 2008;17:3776–83.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Rohe HJ, Ahmed IS, Twist KE, Craven RJ. PGRMC1 (progesterone receptor membrane component 1): a targetable protein with multiple functions in steroid signaling, P450 activation and drug binding. Pharmacol Ther. 2009;121:14–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Peluso JJ, Pappalardo A, Losel R, Wehling M. Progesterone membrane receptor component 1 expression in the immature rat ovary and its role in mediating progesterone's antiapoptotic action. Endocrinology. 2006;147:3133–40.CrossRefPubMedGoogle Scholar
  49. 49.
    Schuster J, Karlsson T, Karlstrom PO, Poromaa IS, Dahl N. Down-regulation of progesterone receptor membrane component 1 (PGRMC1) in peripheral nucleated blood cells associated with premature ovarian failure (POF) and polycystic ovary syndrome (PCOS). Reprod Biol Endocrinol. 2010;8:58.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Peluso JJ, Pappalardo A, Fernandez G, Wu CA. Involvement of an unnamed protein, RDA288, in the mechanism through which progesterone mediates its antiapoptotic action in spontaneously immortalized granulosa cells. Endocrinology. 2004;145:3014–22.CrossRefPubMedGoogle Scholar
  51. 51.
    Peluso JJ, Pappalardo A, Losel R, Wehling M. Expression and function of PAIRBP1 within gonadotropin-primed immature rat ovaries: PAIRBP1 regulation of granulosa and luteal cell viability. Biol Reprod. 2005;73:261–70.CrossRefPubMedGoogle Scholar
  52. 52.
    Peluso JJ, Yuan A, Liu X, Lodde V. Plasminogen activator inhibitor 1 RNA-binding protein interacts with progesterone receptor membrane component 1 to regulate progesterone's ability to maintain the viability of spontaneously immortalized granulosa cells and rat granulosa cells. Biol Reprod. 2013;88:20.CrossRefPubMedGoogle Scholar
  53. 53.
    Ratert N, Meyer HA, Jung M, Lioudmer P, Mollenkopf HJ, Wagner I, et al. miRNA profiling identifies candidate mirnas for bladder cancer diagnosis and clinical outcome. J Mol Diagn. 2013;15(5):695–705.CrossRefPubMedGoogle Scholar
  54. 54.
    Oda S, Nakajima M, Toyoda Y, Fukami T, Yokoi T. Progesterone receptor membrane component 1 modulates human cytochrome p450 activities in an isoform-dependent manner. Drug Metab Dispos. 2011;39:2057–65.CrossRefPubMedGoogle Scholar
  55. 55.
    Szczesna-Skorupa E, Kemper B. Progesterone receptor membrane component 1 inhibits the activity of drug-metabolizing cytochromes P450 and binds to cytochrome P450 reductase. Mol Pharmacol. 2011;79:340–50.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Watanabe K, Sunohara M, Amano Y, Ishikawa R, Ichinose J, Nakajima J, et al. Histone methylationmediated silencing of mir-139 enhances an aggressive phenotype of non-small cell lung cancer. Clin Cancer Res. 2014;20:B28.CrossRefGoogle Scholar
  57. 57.
    Au SL, Wong CC, Lee JM, Fan DN, Tsang FH, Ng IO, et al. Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology. 2012;56:622–31.CrossRefPubMedGoogle Scholar
  58. 58.
    Schlessinger K, Hall A, Tolwinski N. Wnt signaling pathways meet Rho GTPases. Genes. 2009;265–77.Google Scholar
  59. 59.
    Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell. 2011;145:926–40.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Chaudhary A, King WG, Mattaliano MD, Frost JA, Diaz B, Morrison DK, et al. Phosphatidylinositol 3-kinase regulates Raf1 through Pak phosphorylation of serine 338. Curr Biol. 2000;10:551–4.CrossRefPubMedGoogle Scholar
  61. 61.
    Bundy LM, Sealy L. CCAAT/enhancer binding protein beta (C/EBPβ)-2 transforms normalmammary epithelial cells and induces epithelial tomesenchymal transition in culture. Oncogene. 2003;22:869–83.CrossRefPubMedGoogle Scholar
  62. 62.
    Kim J, Shao Y, Kim SY, Kim S, Song HK, Jeon JH, et al. Hypoxia-induced IL-18 increases hypoxia- inducible factor-1α expression through a Rac1-dependent NF-κB pathway. Mol Biol Cell. 2008;19:433–44.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Hong J, Zhou J, Fu J, He T, Qin J, Wang L, et al. Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res. 2011;71:3980–90.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Barber MA, Welch HC. PI3K and RAC signalling in leukocyte and cancer cell migration. Bull Cancer. 2006;93:E44–52.PubMedGoogle Scholar
  65. 65.
    Vega FM, Ridley AJ. Rho GTPases in cancer cell biology. FEBS Lett. 2008;582:2093–101.CrossRefPubMedGoogle Scholar
  66. 66.
    Makrodouli E, Oikonomou E, Koc M, Andera L, Sasazuki T, Shirasawa S, et al. BRAF and RAS oncogenes regulate Rho GTPase pathways to mediate migration and invasion properties in human colon cancer cells: A comparative study. Mol Cancer. 2011;10:118.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Sheldahl LC, Park M, Malbon CC, Moon RT. Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a Gprotein- dependent manner. Curr Biol. 1999;9:695–8.CrossRefPubMedGoogle Scholar
  68. 68.
    Huang C, Jacobson K, Schaller MD. MAP kinases and cell migration. J Cell Sci. 2004;117:4619–28.CrossRefPubMedGoogle Scholar
  69. 69.
    Du J, Sun C, Hu Z, Yang Y, Zhu Y, Zheng D, et al. Lysophosphatidic acid induces MDA-MB-231 breast cancer cells migration through activation of PI3K/PAK1/ERK signaling. PLoS One. 2010;5:e15940.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Matsuda T, Yamamoto T, Muraguchi A, Saatcioglu F. Cross-talk between transforming growth factor-β and estrogen receptor signaling through Smad3. J Biol Chem. 2001;276:42908–14.CrossRefPubMedGoogle Scholar
  71. 71.
    Lee CH, Kuo WH, Lin CC, Oyang YJ, Huang HC, Juan HF. MicroRNA-regulated protein-protein interaction networks and their functions in breast cancer. Int J Mol Sci. 2013;14(6):11560–606.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Buck MB, Knabbe C. TGF-β signaling in breast cancer. Ann N Y Acad Sci. 2006;1089:119–26.CrossRefPubMedGoogle Scholar
  73. 73.
    Zavadil J, Bottinger EP. TGF-β and epithelial-to-mesenchymal transitions. Oncogene. 2005;24:5764–74.CrossRefPubMedGoogle Scholar
  74. 74.
    Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 2008;133:66–77.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Romashkova JA, Makarov SS. NF-κB is a target of AKT in antiapoptotic PDGF signalling. Nature. 1999;401:86–90.CrossRefPubMedGoogle Scholar
  76. 76.
    Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000;14:2123–33.CrossRefPubMedGoogle Scholar
  77. 77.
    Zucker S, Vacirca J. Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev. 2004;23:101–17.CrossRefPubMedGoogle Scholar
  78. 78.
    Sawey ET, Johnson JA, Crawford HC. Matrix metalloproteinase 7 controls pancreatic acinar cell transdifferentiation by activating the Notch signaling pathway. Proc Natl Acad Sci U S A. 2007;104:19327–32.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Pope JL, Bhat AA, Sharma A, Ahmad R, Krishnan M, Washington MK, et al. Claudin-1 regulates intestinal epithelial homeostasis through the modulation of Notch-signalling. Gut. 2014;63:622–34.CrossRefPubMedGoogle Scholar
  80. 80.
    Witty JP, McDonnell S, Newell KJ, Cannon P, Navre M, Tressler RJ, et al. Modulation of matrilysin levels in colon carcinoma cell lines affects tumorigenicity in vivo. Cancer Res. 1994;54:4805–12.PubMedGoogle Scholar
  81. 81.
    Yamamoto H, Itoh F, Hinoda Y, Imai K. Suppression of matrilysin inhibits colon cancer cell invasion in vitro. Int J Cancer. 1995;61:218–22.CrossRefPubMedGoogle Scholar
  82. 82.
    van Kempen LC, Coussens LM. MMP9 potentiates pulmonary metastasis formation. Cancer Cell. 2002;2:251–2.CrossRefPubMedGoogle Scholar
  83. 83.
    Tolias KF, Cantley LC, Carpenter CL. Rho family GTPases bind to phosphoinositide kinases. J Biol Chem. 1995;270:17656–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Vega F, Medeiros LJ, Leventaki V, et al. Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res. 2006;66:6589–97.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Araki T, Hayashi M, Watanabe N, et al. Down-regulation of Mcl-1 by inhibition of the PI3-K/Akt pathway is required for cell shrinkage-dependent cell death. Biochem Biophys Res Commun. 2002;290:1275–81.CrossRefPubMedGoogle Scholar
  86. 86.
    Kim B, Nam HJ, Pyo KE, Jang MJ, Kim IS, Kim D, et al. Breast cancer metastasis suppressor 1 (BRMS1) is destabilized by the Cul3-SPOP E3 ubiquitin ligase complex. Biochem Biophys Res Commun. 2011;415:720–6.CrossRefPubMedGoogle Scholar
  87. 87.
    Cronan MR, Nakamura K, Johnson NL, Granger DA, Cuevas BD, Wang JG, et al. Defining MAP3 kinases required for MDA-MB-231 cell tumor growth and metastasis. Oncogene. 2011;31:3889–900.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Ramsay AK, McCracken SR, Soofi M, Fleming J, Yu AX, Ahmad I, et al. ERK5 signalling in prostate cancer promotes an invasive phenotype. Br J Cancer. 2011;104:664–72.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Lau KS, Dennis JW. N-Glycans in cancer progression. Glycobiology. 2008;18:750–60.CrossRefPubMedGoogle Scholar
  90. 90.
    Moutsatsou P, Papavassiliou AG. The glucocorticoid receptor signaling in breast cancer. J Cell Mol Med. 2008;12:145–63.CrossRefPubMedGoogle Scholar
  91. 91.
    Adriaenssens E, Vanhecke E, Saule P, Mougel A, Page A, Romon R, et al. Nerve growth factor is a potential therapeutic target in breast cancer. Cancer Res. 2008;68:346–51.CrossRefPubMedGoogle Scholar
  92. 92.
    Aust S, Obrist P, Klimpfinger M, Tucek G, Jager W, Thalhammer T. Altered expression of the hormone and xenobiotic-metabolizing sulfotransferase enzymes 1A2 and 1C1 in malignant breast tissue. Int J Oncol. 2005;26:1079–85.PubMedGoogle Scholar
  93. 93.
    Naushad SM, Reddy CA, Rupasree Y, Pavani A, Digumarti RR, Gottumukkala SR, et al. Cross-talk between one-carbon metabolism and xenobiotic metabolism: Implications on oxidative DNA damage and susceptibility to breast cancer. Cell Biochem Biophys. 2011;61:715–23.CrossRefPubMedGoogle Scholar
  94. 94.
    Previdi S, Maroni P, Matteucci E, Broggini M, Bendinelli P, Desiderio MA. Interaction between human breast cancer metastasis and bone microenvironment through activated hepatocyte growth factor/Met and bcatenin/Wnt pathways. Eur J Cancer. 2010;46:1679–91.CrossRefPubMedGoogle Scholar
  95. 95.
    Smirnova T, Zhou ZN, Flinn RJ, Wyckoff J, Boimel PJ, Pozzuto M, et al. Phosphoinositide 3-kinase signaling is critical for ErbB3- driven breast cancer cell motility and metastasis. Oncogene. 2012;31:706–15.CrossRefPubMedGoogle Scholar
  96. 96.
    Song M, Yin Y, Zhang J, Zhang B, Bian Z, Quan C, et al. MiR-139-5p inhibits migration and invasion of colorectal cancer by downregulating AMFR and NOTCH1. Protein Cell. 2014;5:851–61.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Tseng CW, Lin CC, Chen CN, Huang HC, Juan HF. Integrative network analysis reveals active microRNAs and their functions in gastric cancer. BMC Syst Biol. 2011;5:99.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G, et al. Altered microRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res. 2007;67:11612–20.CrossRefPubMedGoogle Scholar
  99. 99.
    Hasseine LK, Hinault C, Lebrun P, et al. miR-139 impacts FoxO1 action by decreasing FoxO1 protein in mouse hepatocytes. Biochem Biophys Res Commun. 2009;390:1278–82.CrossRefPubMedGoogle Scholar
  100. 100.
    Miles GD, Seiler M, Rodriguez L, Rajagopal G, Bhanot G. Identifying microRNA/mRNA dysregulations in ovarian cancer. BMC Res Notes. 2012;5:164.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Sandy L, Wong CC, Lee JM, Fan DN, Tsang FH, Ng IO, et al. Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology. 2012;56(2):622–31.Google Scholar
  102. 102.
    Yang H, Kong W, He L, Zhao JJ, O’Donnell JD, Wang J, et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008;68(2):425–33.CrossRefPubMedGoogle Scholar
  103. 103.
    Krishnan K, Steptoe AL, Martin HC, Pattabiraman DR, Nones K, Waddell N, et al. miR-139-5p is a regulator of metastatic pathways in breast cancer. RNA. 2013;19(12):1767–80.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Fan Q, He M, Deng X, Wu WK, Zhao L, Tang J, et al. Derepression of c-Fos caused by microRNA-139 down-regulation contributes to the metastasis of human hepatocellular carcinoma. Cell Biochem Funct. 2012;31:319–24.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • He-da Zhang
    • 1
    • 2
  • Lin-hong Jiang
    • 3
  • Da-wei Sun
    • 2
    • 4
  • Jian Li
    • 2
  • Jin-hai Tang
    • 2
    • 5
  1. 1.Graduate SchoolXuzhou Medical CollegeXuzhouChina
  2. 2.Department of General SurgeryNanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu ProvinceNanjingChina
  3. 3.Xuzhou Infectious Disease HospitalXuzhouChina
  4. 4.Nanjing University of Chinese MedicineNanjingChina
  5. 5.Department of General Surgery, the Affiliated Jiangsu Cancer HospitalNanjing Medical UniversityNanjingChina

Personalised recommendations