Skip to main content

Advertisement

Log in

A polysaccharide from Trametes robiniophila Murrill induces apoptosis through intrinsic mitochondrial pathway in human osteosarcoma (U-2 OS) cells

  • Research Article
  • Published:
Tumor Biology

Abstract

In this study, we isolated and purified one homogeneous polysaccharide (TRP) from the fruiting bodies of Trametes robiniophila Murrill, and its average molecular weight was estimated to be 8.7 × 104 Da. Monosaccharide composition analysis by gas chromatography (GC) indicated that TRP was composed of glucose, galactose, and arabinose in the molar ratio of 4.2:1.10:1.06. Particularly, we evaluated the anti-cancer efficacy of TRP on human osteosarcoma U-2 OS cells in vitro and associated possible molecular mechanism. Our result provided the first evidence that treatment of U-2 OS cells with TRP resulted in a dose- and time-dependent inhibitory effect on cell proliferation of U-2 OS cells and caused apoptotic death. Moreover, TRP induced the apoptosis of U-2 OS cells via a mitochondria-dependent pathway, as evidenced by an increase in Bax/Bcl-2 ratio, a loss of mitochondrial membrane potential (Δψm), release of cytochrome c from the mitochondria to the cytosol, activation of caspase-9 and caspase-3, and cleavage of poly(ADP-ribose) polymerase (PARP) in U-2 OS cells. In addition, overexpression of metadherin (MTDH), one carcinogene, was inhibited in U-2 OS cells after exposure to TRP for 24 h. Our findings suggested that TRP inhibited the proliferation of human osteosarcoma cancer cells by promoting apoptosis through the intrinsic mitochondrial pathway, as well as inhibition of MTDH expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chou AJ, Gorlick R. Chemotherapy resistance in osteosarcoma: current challenges and future directions. Expert Rev Anticancer Ther. 2006;6:1075–85.

    Article  CAS  PubMed  Google Scholar 

  2. Marina N, Gebhardt M, Teot L, Gorlick R. Biology and therapeutic advances for pediatric osteosarcoma. Oncologist. 2004;9:422–41.

    Article  PubMed  Google Scholar 

  3. Lee JA, Kim MS, Kim DH, Lim JS, Yoo JY, Koh JS, et al. Relative tumor burden predicts metastasis-free survival in pediatric osteosarcoma. Pediatr Blood Cancer. 2008;50:195–200.

    Article  PubMed  Google Scholar 

  4. Longhi A, Errani C, De Paolis M, Mercuri M, Bacci G. Primary bone osteosarcoma in the pediatric age: state of the art. Cancer Treat Rev. 2006;32:423–36.

    Article  PubMed  Google Scholar 

  5. Wu PK, Chen WM, Chen CF, Lee OK, Haung CK, Chen TH. Primary osteogenic sarcoma with pulmonary metastasis: clinical results and prognostic factors in 91 patients. Jpn J Clin Oncol. 2009;39:514–22.

    Article  PubMed  Google Scholar 

  6. Yang C, Choy E, Hornicek FJ, Wood KB, Schwab JH, Liu X, et al. Histone deacetylase inhibitor (HDACI) PCI-24781 potentiates cytotoxic effects of doxorubicin in bone sarcoma cells. Cancer Chemother Pharmacol. 2011;67:439–46.

    Article  CAS  PubMed  Google Scholar 

  7. Wittenburg LA, Bisson L, Rose BJ, Korch C, Thamm DH. The histone deacetylase inhibitor valproic acid sensitizes human and canine osteosarcoma to doxorubicin. Cancer Chemother Pharmacol. 2011;67:83–92.

    Article  CAS  PubMed  Google Scholar 

  8. Petrilli AS, de Camargo B, Filho VO, Bruniera P, Brunetto AL, Jesus-Garcia R, et al. Results of the Brazilian Osteosarcoma Treatment Group Studies III and IV: prognostic factors and impact on survival. J Clin Oncol. 2006;24:1161–8.

    Article  PubMed  Google Scholar 

  9. Zhang Y, Sun S, Chen J, Ren P, Hu Y, Cao Z, et al. Oxymatrine induces mitochondria dependent apoptosis in human osteosarcoma MNNG/HOS cells through inhibition of PI3K/Akt pathway. Tumour Biol. 2014;35:1619–25.

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Chen J, Zhang D, Zhang Y, Wen Y, Li L, et al. Tumoricidal effects of a selenium (Se)-polysaccharide from Ziyang green tea on human osteosarcoma U-2 OS cells. Carbohydr Polym. 2013;98:1186–90.

    Article  CAS  PubMed  Google Scholar 

  11. Li L, Ye S, Wang Y, Tang Z. Progress on experimental research and clinical application of Trametes robiniophila. China Cancer. 2006;16:110–3.

    Google Scholar 

  12. Zhang N, Kong X, Yan S, Yuan C, Yang Q. Huaier aqueous extract inhibits proliferation of breast cancer cells by inducing apoptosis. Cancer Sci. 2010;101:2375–83.

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Liu Y, Hu Y. Optimization of polysaccharides extraction from Trametes robiniophila and its antioxidant activities. Carbohydr Polym. 2014;111:324–32.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang T, Wang K, Zhang J, Wang X, Chen Z, Ni C, et al. Huaier aqueous extract inhibits colorectal cancer stem cell growth partially via downregulation of the Wnt/β-catenin pathway. Oncol Lett. 2013;5:1171–6.

    PubMed  PubMed Central  Google Scholar 

  15. Ren J, Zheng C, Feng G, Liang H, Xia X, Fang J, et al. Inhibitory effect of extract of fungi of Huaier on hepatocellular carcinoma cells. J Huazhong Univ Sci Technolog Med Sci. 2009;29:198–201.

    Article  PubMed  Google Scholar 

  16. Huang T, Kong Q, Lu H, Dai G. Experimental study of extract of fungi of Huaier inducing apoptosis of the human adenocarcinoma of lung A549 cells. Chin J Tuberc Respir Dis. 2001;24:487–8.

    Google Scholar 

  17. Guo Y, Cheng P, Chen Y, Zhou X, Yu P, Li Y. Studies on the constituents of polysaccharide from the hyphae of Trametes robiniophila (II): identification of polysaccharide from the hyphae of Trametes robiniophila and determination of its molar ratio. J Chin Pharm U. 1992;23:155–7.

    CAS  Google Scholar 

  18. Guo Y, Cheng P, Chen Y, Zhou X, Yu P, Li Y. Isolation and analysis of the polysaccharide of Huaier mycelium. Chin J Biochem Pharm. 1993;63:56–9.

    Google Scholar 

  19. Matthaei JH, Jone OW, Martin RG, Nirenberg MW. Characteristics and composition of RNA coding units. Proc Natl Acad Sci U S A. 1962;48:666–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350–6.

    Article  CAS  Google Scholar 

  21. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  22. Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973;54:484–9.

    Article  CAS  PubMed  Google Scholar 

  23. Lehrfeld J. Simultaneous gas–liquid chromatographic determination of aldonic acids and aldoses. Anal Chem. 1985;57:346–8.

    Article  CAS  Google Scholar 

  24. Jones TM, Albersheim P. A gas chromatographic method for the determination of aldose and uronic acid constituents of plant cell wall polysaccharides. Plant Physiol. 1972;49:926–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oades JM. Gas–liquid chromatography of alditol acetates and its application to the analysis of sugars in complex hydrolysates. J Chromatogr. 1967;28:246–52.

    Article  CAS  PubMed  Google Scholar 

  26. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281:1305–8.

    Article  CAS  PubMed  Google Scholar 

  27. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309–12.

    Article  CAS  PubMed  Google Scholar 

  28. Lavrik IN, Golks A, Krammer PH. Caspases: pharmacological manipulation of cell death. J Clin Invest. 2005;115:2665–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang S, Penchala S, Prabhu S, Wang J, Huang Y. Molecular basis of traditional Chinese medicine in cancer chemoprevention. Curr Drug Discov Technol. 2010;7:67–75.

    Article  CAS  PubMed  Google Scholar 

  30. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267:1456–62.

    Article  CAS  PubMed  Google Scholar 

  31. Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, et al. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci. 2003;94:15–21.

    Article  CAS  PubMed  Google Scholar 

  32. Reed JC. Apoptosis-regulating proteins as targets for drug discovery. Trends Mol Med. 2001;7:314–9.

    Article  CAS  PubMed  Google Scholar 

  33. Gross A, McDonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13:1899–911.

    Article  CAS  PubMed  Google Scholar 

  34. Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ. Movement of Bax from the cytosol to mitochondria. J Cell Biol. 1997;139:1281–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rossé T, Olivier R, Monney L, Rager M, Conus S, Fellay I, et al. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature. 1998;391:496–9.

    Article  PubMed  Google Scholar 

  36. Yang SH, Chien CM, Lu MC, Lin YH, Hu XW, Lin SR. Up-regulation of Bax and endonuclease G, and down-modulation of Bcl-XL involved in cardiotoxin III-induced apoptosis in K562 cells. Exp Mol Med. 2006;38:435–44.

    Article  CAS  PubMed  Google Scholar 

  37. Wu G, Chu J, Huang Z, Ye J, Chen P, Zheng C, et al. Xiao Jin Wan, a traditional Chinese herbal formula, inhibits proliferation via arresting cell cycle progression at the G2/M phase and promoting apoptosis via activating the mitochondrial-dependent pathway in U-2 OS human osteosarcoma cells. Int J Oncol. 2013;42:1070–80.

    PubMed  Google Scholar 

  38. Petros AM, Olejniczak ET, Fesik SW. Structural biology of the Bcl-2 family of proteins. Biochim Biophys Acta. 2004;1644:83–94.

    Article  CAS  PubMed  Google Scholar 

  39. Chiang JH, Yang JS, Ma CY, Yang MD, Huang HY, Hsia TC, et al. Danthron, an anthraquinone derivative, induces DNA damage and caspase cascades mediated apoptosis in SNU-1 human gastric cancer cells through mitochondrial permeability transition pores and Bax-triggered pathways. Chem Res Toxicol. 2011;24:20–9.

    Article  CAS  PubMed  Google Scholar 

  40. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001;292:727–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Korper S, Nolte F, Rojewski MT, Thiel E, Schrezenmeier H. The K+ channel openers diazoxide and NS1619 induce depolarization of mitochondria and have differential effects on cell Ca2+ in CD34+ cell line KG-1. Exp Hematol. 2003;31:815–23.

    Article  CAS  PubMed  Google Scholar 

  42. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, et al. Molecular characterization of mitochondrial apoptosis inducing factors. Nature. 1999;397:441–6.

    Article  CAS  PubMed  Google Scholar 

  43. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407:770–6.

    Article  CAS  PubMed  Google Scholar 

  44. Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem. 1997;272:17907–11.

    Article  CAS  PubMed  Google Scholar 

  45. Chang HY, Yang X. Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev. 2000;64:821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91:479–89.

    Article  CAS  PubMed  Google Scholar 

  47. Khosravi-Far R, Esposti MD. Death receptor signals to mitochondria. Cancer Biol Ther. 2004;3:1051–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nagata S, Golstein P. The Fas death factor. Science. 1995;267:1449–56.

    Article  CAS  PubMed  Google Scholar 

  49. Wang F, Ke ZF, Wang R, Wang YF, Huang LL, Wang LT. Astrocyte elevated gene-1 (AEG-1) promotes osteosarcoma cell invasion through the JNK/c-Jun/MMP-2 pathway. Biochem Biophys Res Commun. 2014;452:933–9.

    Article  CAS  PubMed  Google Scholar 

  50. Wang F, Ke ZF, Sun SJ, Chen WF, Yang SC, Li SH, et al. Oncogenic roles of astrocyte elevated gene-1 (AEG-1) in osteosarcoma progression and prognosis. Cancer Biol Ther. 2011;12:539–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from Heilongjiang Research Topics Fund (GC09C412-2) and Natural Science Foundation of Heilongjiang Province fund (H201454).

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbo Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Ma, S., Liu, N. et al. A polysaccharide from Trametes robiniophila Murrill induces apoptosis through intrinsic mitochondrial pathway in human osteosarcoma (U-2 OS) cells. Tumor Biol. 36, 5255–5263 (2015). https://doi.org/10.1007/s13277-015-3185-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3185-9

Keywords

Navigation