Tumor Biology

, Volume 36, Issue 3, pp 1329–1338 | Cite as

Research progress on the multidrug resistance mechanisms of osteosarcoma chemotherapy and reversal

  • Suoyuan Li
  • Wei Sun
  • Hongsheng Wang
  • Dongqing Zuo
  • Yingqi Hua
  • Zhengdong Cai


Osteosarcoma (OS) is the most common and aggressive primary malignant type of bone cancer in children and adolescents. Chemotherapy is one of the most important treatments for OS. Although cancer therapy has improved over the past few decades, survival outcomes for OS patients remain unsatisfactory. One of the primary reasons for the failure of current treatments is that patients with stage IV cancer often develop resistance to anticancer agents. This article will review multidrug resistance (MDR) mechanisms of OS and strategies for overcoming resistance.


Osteosarcoma Multidrug resistance mechanisms Reversal 


Conflicts of interest



  1. 1.
    Sakamoto A, Iwamoto Y. Current status and perspectives regarding the treatment of osteosarcoma: chemotherapy. Rev Recent Clin Trials. 2008;3(3):228.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Meyers PA, Schwartz CL, Krailo MD, Healey JH, Bernstein ML, Betcher D, et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival—a report from the Children’s Oncology Group. J Clin Oncol. 2008;26(4):633–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. Cancer Treat Res. 2009;152:3–13. doi: 10.1007/978-1-4419-0284-9_1.PubMedCrossRefGoogle Scholar
  4. 4.
    Desandes E. Survival from adolescent cancer. Cancer Treat Rev. 2007;33(7):609–15.PubMedCrossRefGoogle Scholar
  5. 5.
    Yang C, Gao R, Wang J, Yuan W, Wang C, Zhou X. High-mobility group nucleosome-binding domain 5 increases drug resistance in osteosarcoma through upregulating autophagy. Tumour Biol. 2014;35(7):6357–63. doi: 10.1007/s13277-014-1833-0.PubMedCrossRefGoogle Scholar
  6. 6.
    Lourda M, Trougakos IP, Gonos ES. Development of resistance to chemotherapeutic drugs in human osteosarcoma cell lines largely depends on up-regulation of clusterin/apolipoprotein J. Int J Cancer. 2007;120(3):611–22.PubMedCrossRefGoogle Scholar
  7. 7.
    Limtrakul P, Khantamat O, Pintha K. Inhibition of P-glycoprotein function and expression by kaempferol and quercetin. J Chemother. 2005;17(1):86–95. doi: 10.1179/joc.2005.17.1.86.PubMedCrossRefGoogle Scholar
  8. 8.
    Wessler JD, Grip LT, Mendell J, Giugliano RP. The P-glycoprotein transport system and cardiovascular drugs. J Am Coll Cardiol. 2013;61(25):2495–502.PubMedCrossRefGoogle Scholar
  9. 9.
    Tiwari KA, Sodani K, Dai C-L, Ashby RC, Chen Z-S. Revisiting the ABCs of multidrug resistance in cancer chemotherapy. Curr Pharm Biotechnol. 2011;12(4):570–94.PubMedCrossRefGoogle Scholar
  10. 10.
    Gillet JP, Gottesman MM. Mechanisms of multidrug resistance in cancer. Methods Mol Biol. 2010;596:47–76. doi: 10.1007/978-1-60761-416-6_4.PubMedCrossRefGoogle Scholar
  11. 11.
    Keppler D. Multidrug resistance proteins (MRPs, ABCCs): importance for pathophysiology and drug therapy. Drug Transporters. Springer; 2011;299–323.Google Scholar
  12. 12.
    Rajkumar T, Yamuna M. Multiple pathways are involved in drug resistance to doxorubicin in an osteosarcoma cell line. Anticancer Drugs. 2008;19(3):257–65.PubMedCrossRefGoogle Scholar
  13. 13.
    Serra M, Pasello M, Manara MC, Scotlandi K, Ferrari S, Bertoni F, et al. May P-glycoprotein status be used to stratify high-grade osteosarcoma patients? Results from the Italian/Scandinavian Sarcoma Group 1 treatment protocol. Int J Oncol. 2006;29(6):1459.PubMedGoogle Scholar
  14. 14.
    Windsor RE, Strauss SJ, Kallis C, Wood NE, Whelan JS. Germline genetic polymorphisms may influence chemotherapy response and disease outcome in osteosarcoma: a pilot study. Cancer. 2012;118(7):1856–67. doi: 10.1002/cncr.26472.PubMedCrossRefGoogle Scholar
  15. 15.
    Baldini N, Scotlandi K, Barbanti-Bròdano G, Manara MC, Maurici D, Bacci G, et al. Expression of P-glycoprotein in high-grade osteosarcomas in relation to clinical outcome. N Engl J Med. 1995;333(21):1380–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Han L, Wang YF, Zhang Y, Wang N, Guo XJ, Yang JK, et al. Increased expression and function of P-glycoprotein in peripheral blood CD56+ cells is associated with the chemoresistance of non-small-cell lung cancer. Cancer Chemother Pharmacol. 2012;70(3):365–72. doi: 10.1007/s00280-012-1915-x.PubMedCrossRefGoogle Scholar
  17. 17.
    Brambilla D, Zamboni S, Federici C, Lugini L, Lozupone F, Milito AD, et al. P-glycoprotein binds to ezrin at amino acid residues 149–242 in the FERM domain and plays a key role in the multidrug resistance of human osteosarcoma. Int J Cancer. 2012;130(12):2824–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Matherly LH, Diop-Bove N, Goldman ID. Biological role, properties, and therapeutic applications of the reduced folate carrier (RFC-SLC19A1) and the proton-coupled folate transporter (PCFT-SLC46A1). Targeted Drug Strategies for Cancer and Inflammation. Springer; 2011;1–34.Google Scholar
  19. 19.
    Patiño-García A, Zalacaín M, Marrodán L, San-Julián M, Sierrasesúmaga L. Methotrexate in pediatric osteosarcoma: response and toxicity in relation to genetic polymorphisms and dihydrofolate reductase and reduced folate carrier 1 expression. J Pediatr. 2009;154(5):688–93.PubMedCrossRefGoogle Scholar
  20. 20.
    Matherly LH, Hou Z, Deng Y. Human reduced folate carrier: translation of basic biology to cancer etiology and therapy. Cancer Metastasis Rev. 2007;26(1):111–28.PubMedCrossRefGoogle Scholar
  21. 21.
    Ifergan I, Meller I, Issakov J, Assaraf YG. Reduced folate carrier protein expression in osteosarcoma: implications for the prediction of tumor chemosensitivity. Cancer. 2003;98(9):1958–66. doi: 10.1002/cncr.11741.PubMedCrossRefGoogle Scholar
  22. 22.
    Serra M, Reverter-Branchat G, Maurici D, Benini S, Shen J-N, Chano T, et al. Analysis of dihydrofolate reductase and reduced folate carrier gene status in relation to methotrexate resistance in osteosarcoma cells. Ann Oncol. 2004;15(1):151–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Fine RL, Chambers TC, Sachs CW. P-glycoprotein, multidrug resistance and protein kinase C. Stem Cells. 1996;14(1):47–55.PubMedCrossRefGoogle Scholar
  24. 24.
    Liao C-L, Lai K-C, Huang A-C, Yang J-S, Lin J-J, Wu S-H, et al. Gallic acid inhibits migration and invasion in human osteosarcoma U-2 OS cells through suppressing the matrix metalloproteinase-2/-9, protein kinase B (PKB) and PKC signaling pathways. Food Chem Toxicol. 2012;50(5):1734–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Hong SH, Osborne T, Ren L, Briggs J, Mazcko C, Burkett S, et al. Protein kinase C regulates ezrin–radixin–moesin phosphorylation in canine osteosarcoma cells. Vet Comp Oncol. 2011;9(3):207–18.PubMedCrossRefGoogle Scholar
  26. 26.
    Bulut G, Hong S, Chen K, Beauchamp E, Rahim S, Kosturko G, et al. Small molecule inhibitors of ezrin inhibit the invasive phenotype of osteosarcoma cells. Oncogene. 2011;31(3):269–81.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Yu C, Zhongliang D. Effect of protein kinase C on multidrug resistance in human osteosarcoma cells and its underlying mechanism [J]. J Third Mil Med Univ. 2011;18:005.Google Scholar
  28. 28.
    Onishi Y, Kawamoto T, Kishimoto K, Hara H, Fukase N, Toda M, et al. PKD1 negatively regulates cell invasion, migration and proliferation ability of human osteosarcoma. Int J Oncol. 2012;40(6):1839.PubMedGoogle Scholar
  29. 29.
    Azarova AM, Lyu YL, Lin C-P, Tsai Y-C, Lau JY-N, Wang JC, et al. Roles of DNA topoisomerase II isozymes in chemotherapy and secondary malignancies. Proc Natl Acad Sci. 2007;104(26):11014–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Nitiss JL. Targeting DNA, topoisomerase II in cancer chemotherapy. Nat Rev Cancer. 2009;9(5):338–50.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Brown GA, McPherson JP, Gu L, Hedley DW, Toso R, Deuchars KL, et al. Relationship of DNA topoisomerase IIα and β expression to cytotoxicity of antineoplastic agents in human acute lymphoblastic leukemia cell lines. Cancer Res. 1995;55(1):78–82.PubMedGoogle Scholar
  32. 32.
    Pommier Y, Leo E, Zhang H, Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol. 2010;17(5):421–33.PubMedCrossRefGoogle Scholar
  33. 33.
    Nguyen A, Lasthaus C, Guerin E, Marcellin L, Pencreach E, Gaub MP, et al. Role of Topoisomerases in pediatric high grade osteosarcomas: TOP2A gene is one of the unique molecular biomarkers of chemoresponse. Cancers (Basel). 2013;5(2):662–75. doi: 10.3390/cancers5020662.CrossRefGoogle Scholar
  34. 34.
    Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene. 2003;22(47):7369–75.PubMedCrossRefGoogle Scholar
  35. 35.
    Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 1994;54(16):4313–20.PubMedGoogle Scholar
  36. 36.
    Uozaki H, Horiuchi H, Ishida T, Iijima T, Imamura T, Machinami R. Overexpression of resistance-related proteins (metallothioneins, glutathione-S-transferase π, heat shock protein 27, and lung resistance-related protein) in osteosarcoma. Cancer. 1997;79(12):2336–44.PubMedCrossRefGoogle Scholar
  37. 37.
    Wei L, Song X, Wang X, Li M. Expression of MDR1 and GST-pi in osteosarcoma and soft tissue sarcoma and their correlation with chemotherapy resistance. Zhonghua zhong liu za zhi [Chin J Oncol]. 2006;28(6):445–8.Google Scholar
  38. 38.
    Bruheim S, Bruland OS, Breistol K, Maelandsmo GM, Fodstad Ø. Human osteosarcoma xenografts and their sensitivity to chemotherapy. Pathol Oncol Res. 2004;10(3):133–41.PubMedCrossRefGoogle Scholar
  39. 39.
    Pasello M, Michelacci F, Scionti I, Hattinger CM, Zuntini M, Caccuri AM, et al. Overcoming glutathione S-transferase P1-related cisplatin resistance in osteosarcoma. Cancer Res. 2008;68(16):6661–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Windsor RE, Strauss SJ, Kallis C, Wood NE, Whelan JS. Germline genetic polymorphisms may influence chemotherapy response and disease outcome in osteosarcoma. Cancer. 2012;118(7):1856–67.PubMedCrossRefGoogle Scholar
  41. 41.
    Li JZ, Tian ZQ, Jiang SN, Feng T. Effect of variation of ABCB1 and GSTP1 on osteosarcoma survival after chemotherapy. Genet Mol Res. 2014;13(2):3186–92. doi: 10.4238/2014.April.25.3.PubMedCrossRefGoogle Scholar
  42. 42.
    Yang L-M, Li X-H, Bao C-F. Glutathione S-transferase P1 and DNA polymorphisms with the response to chemotherapy and the prognosis of bone tumor. Asian Pac J Cancer Prev. 2012;13(11):5883–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Murata T, Haisa M, Uetsuka H, Nobuhisa T, Ookawa T, Tabuchi Y, et al. Molecular mechanism of chemoresistance to cisplatin in ovarian cancer cell lines. Int J Mol Med. 2004;13(6):865–8.PubMedGoogle Scholar
  44. 44.
    Wu X, Cai Z-D, Lou L-M, Zhu Y-B. Expressions of p53, c-MYC, BCL-2 and apoptotic index in human osteosarcoma and their correlations with prognosis of patients. Cancer Epidemiol. 2012;36(2):212–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Nedelcu T, Kubista B, Koller A, Sulzbacher I, Mosberger I, Arrich F, et al. Livin and Bcl-2 expression in high-grade osteosarcoma. J Cancer Res Clin Oncol. 2008;134(2):237–44.PubMedCrossRefGoogle Scholar
  46. 46.
    Fu H-L, Shao L, Wang Q, Jia T, Li M, Yang D-P. A systematic review of p53 as a biomarker of survival in patients with osteosarcoma. Tumor Biol. 2013;34(6):3817–21.CrossRefGoogle Scholar
  47. 47.
    Wong RPC, Tsang WP, Chau PY, Tsang TY, Kwok TT. p53-R273H gains new function in induction of drug resistance through down-regulation of procaspase-3. Mol Cancer Ther. 2007;6(3):1054–61.PubMedCrossRefGoogle Scholar
  48. 48.
    Tsuchiya H, Mori Y, Ueda Y, Okada G, Tomita K. Sensitization and caffeine potentiation of cisplatin cytotoxicity resulting from introduction of wild-type p53 gene in human osteosarcoma. Anticancer Res. 1999;20(1A):235–42.Google Scholar
  49. 49.
    Ozger H, Eralp L, Atalar AC, Toker B, Ates LE, Sungur M, et al. The effect of resistance-related proteins on the prognosis and survival of patients with osteosarcoma: an immunohistochemical analysis. Acta Orthop Traumatol Turc. 2004;43(1):28–34.CrossRefGoogle Scholar
  50. 50.
    Wunder JS, Gokgoz N, Parkes R, Bull SB, Eskandarian S, Davis AM, et al. TP53 mutations and outcome in osteosarcoma: a prospective, multicenter study. J Clin Oncol. 2005;23(7):1483–90. doi: 10.1200/jco.2005.04.074.PubMedCrossRefGoogle Scholar
  51. 51.
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.PubMedCrossRefGoogle Scholar
  52. 52.
    Song B, Wang Y, Xi Y, Kudo K, Bruheim S, Botchkina GI, et al. Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene. 2009;28(46):4065–74. doi: 10.1038/onc.2009.274.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Song B, Wang Y, Titmus MA, Botchkina G, Formentini A, Kornmann M, et al. Research molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer. 2010;9:96.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Zhou Y, Huang Z, Wu S, Zang X, Liu M, Shi J. miR-33a is up-regulated in chemoresistant osteosarcoma and promotes osteosarcoma cell resistance to cisplatin by down-regulating TWIST. J Exp Clin Cancer Res CR. 2014;33(1):12.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang H, Yin Z, Ning K, Wang L, Guo R, Ji Z. Prognostic value of microRNA-223/epithelial cell transforming sequence 2 signaling in patients with osteosarcoma. Hum Pathol. 2014;45(7):1430–6. doi: 10.1016/j.humpath.2014.02.018.PubMedCrossRefGoogle Scholar
  56. 56.
    Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug resistance in cancer: an overview. Cancers (Basel). 2014;6(3):1769–92. doi: 10.3390/cancers6031769.CrossRefGoogle Scholar
  57. 57.
    Fung H, Demple B. A vital role for Ape1/Ref1 protein in repairing spontaneous DNA damage in human cells. Mol Cell. 2005;17(3):463–70.PubMedCrossRefGoogle Scholar
  58. 58.
    Wang D, Luo M, Kelley MR. Human apurinic endonuclease 1 (APE1) expression and prognostic significance in osteosarcoma: enhanced sensitivity of osteosarcoma to DNA damaging agents using silencing RNA APE1 expression inhibition. Mol Cancer Ther. 2004;3(6):679–86.PubMedGoogle Scholar
  59. 59.
    Caronia D, Patino-Garcia A, Milne R, Zalacain-Diez M, Pita G, Alonso M, et al. Common variations in ERCC2 are associated with response to cisplatin chemotherapy and clinical outcome in osteosarcoma patients. Pharmacogenomics J. 2009;9(5):347–53.PubMedCrossRefGoogle Scholar
  60. 60.
    Biason P, Hattinger CM, Innocenti F, Talamini R, Alberghini M, Scotlandi K, et al. Nucleotide excision repair gene variants and association with survival in osteosarcoma patients treated with neoadjuvant chemotherapy. Pharmacogenomics J. 2011;12(6):476–83.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Hao T, Feng W, Zhang J, Sun Y-J, Wang G. Association of four ERCC1 and ERCC2 SNPs with survival of bone tumour patients. Asian Pac J Cancer Prev. 2012;13(8):3821–4.PubMedCrossRefGoogle Scholar
  62. 62.
    Li J, Liu S, Wang W, Zhang K, Liu Z, Zhang C, et al. ERCC polymorphisms and prognosis of patients with osteosarcoma. Tumour Biol. 2014;35(10):10129–36. doi: 10.1007/s13277-014-2322-1.PubMedCrossRefGoogle Scholar
  63. 63.
    Fishel ML, Kelley MR. The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol Asp Med. 2007;28(3):375–95.CrossRefGoogle Scholar
  64. 64.
    Yang J, Yang D, Cogdell D, Du X, Li H, Pang Y, et al. APEX1 gene amplification and its protein overexpression in osteosarcoma: correlation with recurrence, metastasis, and survival. Technol Cancer Res Treat. 2010;9(2):161–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Wang D, Zhong ZY, Li MX, Xiang DB, Li ZP. Vector-based Ape1 small interfering RNA enhances the sensitivity of human osteosarcoma cells to endostatin in vivo. Cancer Sci. 2007;98(12):1993–2001.PubMedCrossRefGoogle Scholar
  66. 66.
    Vangipuram SD, Wang ZJ, Lyman WD. Resistance of stem-like cells from neuroblastoma cell lines to commonly used chemotherapeutic agents. Pediatr Blood Cancer. 2010;54(3):361–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med. 2006;355(12):1253–61.PubMedCrossRefGoogle Scholar
  68. 68.
    Tirino V, Desiderio V, d’Aquino R, De Francesco F, Pirozzi G, Galderisi U, et al. Detection and characterization of CD133+ cancer stem cells in human solid tumours. PLoS One. 2008;3(10):e3469.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Adhikari AS, Agarwal N, Wood BM, Porretta C, Ruiz B, Pochampally RR, et al. CD117 and Stro-1 identify osteosarcoma tumor-initiating cells associated with metastasis and drug resistance. Cancer Res. 2010;70(11):4602–12.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Fujii H, Honoki K, Tsujiuchi T, Kido A, Yoshitani K, Takakura Y. Sphere-forming stem-like cell populations with drug resistance in human sarcoma cell lines. Int J Oncol. 2009;34(5):1381–6.PubMedGoogle Scholar
  71. 71.
    Gangemi R, Paleari L, Orengo AM, Cesario A, Chessa L, Ferrini S, et al. Cancer stem cells: a new paradigm for understanding tumor growth and progression and drug resistance. Curr Med Chem. 2009;16(14):1688–703.PubMedCrossRefGoogle Scholar
  72. 72.
    Di Fiore R, Santulli A, Drago Ferrante R, Giuliano M, De Blasio A, Messina C, et al. Identification and expansion of human osteosarcoma-cancer-stem cells by long-term 3-aminobenzamide treatment. J Cell Physiol. 2009;219(2):301–13.PubMedCrossRefGoogle Scholar
  73. 73.
    Germann UA, Ford PJ, Shlyakhter D, Mason VS, Harding MW. Chemosensitization and drug accumulation effects of VX-710, verapamil, cyclosporin A, MS-209 and GF120918 in multidrug resistant HL60/ADR cells expressing the multidrug resistance-associated protein MRP. Anticancer Drugs. 1997;8(2):141–55.PubMedCrossRefGoogle Scholar
  74. 74.
    Minderman H, O’Loughlin KL, Pendyala L, Baer MR. VX-710 (biricodar) increases drug retention and enhances chemosensitivity in resistant cells overexpressing P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Clin Cancer Res. 2004;10(5):1826–34.PubMedCrossRefGoogle Scholar
  75. 75.
    Wang Z, Xia Q, Cui J, Diao Y, Li J. Reversion of P-glycoprotein-mediated multidrug resistance by diallyl trisulfide in a human osteosarcoma cell line. Oncol Rep. 2014;31(6):2720–6.PubMedGoogle Scholar
  76. 76.
    Yang X, Yang P, Shen J, Osaka E, Choy E, Cote G et al. Prevention of multidrug resistance (MDR) in osteosarcoma by NSC23925. British Journal of Cancer. 2014.Google Scholar
  77. 77.
    Goudarzi KM, Nister M, Lindstrom MS. mTOR inhibitors blunt the p53 response to nucleolar stress by regulating RPL11 and MDM2 levels. Cancer Biol Ther. 2014;15(11):1499–514. doi: 10.4161/15384047.2014.955743.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Fleuren ED, Versleijen-Jonkers YM, Roeffen MH, Franssen GM, Flucke UE, Houghton PJ, et al. Temsirolimus combined with cisplatin or bevacizumab is active in osteosarcoma models. Int J Cancer. 2014;135(12):2770–82. doi: 10.1002/ijc.28933.PubMedCrossRefGoogle Scholar
  79. 79.
    Wagner LM, Fouladi M, Ahmed A, Krailo MD, Weigel B, DuBois SG et al. Phase II study of cixutumumab in combination with temsirolimus in pediatric patients and young adults with recurrent or refractory sarcoma: a report from the Children’s Oncology Group. Pediatric Blood & Cancer. 2014.Google Scholar
  80. 80.
    Moriceau G, Ory B, Mitrofan L, Riganti C, Blanchard F, Brion R, et al. Zoledronic acid potentiates mTOR inhibition and abolishes the resistance of osteosarcoma cells to RAD001 (Everolimus): pivotal role of the prenylation process. Cancer Res. 2010;70(24):10329–39.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Pasello M, Manara MC, Michelacci F, Fanelli M, Hattinger CM, Nicoletti G, et al. Targeting glutathione-S transferase enzymes in musculoskeletal sarcomas: a promising therapeutic strategy. Anal Cell Pathol. 2011;34(3):131–45.CrossRefGoogle Scholar
  82. 82.
    He H, Ni J, Huang J. Molecular mechanisms of chemoresistance in osteosarcoma (Review). Oncol Lett. 2014;7(5):1352.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Mei J, Zhu X, Wang Z, Wang Z. VEGFR, RET, and RAF/MEK/ERK pathway take part in the inhibition of osteosarcoma MG63 cells with sorafenib treatment. Cell Biochem Biophys. 2014;69(1):151–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Pignochino Y, Grignani G, Cavalloni G, Motta M, Tapparo M, Bruno S, et al. Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways. Mol Cancer. 2009;8(1):118.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Susa M, Iyer AK, Ryu K, Choy E, Hornicek FJ, Mankin H, et al. Inhibition of ABCB1 (MDR1) expression by an siRNA nanoparticulate delivery system to overcome drug resistance in osteosarcoma. PLoS One. 2010;5(5):e10764.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Duan Z, Brakora KA, Seiden MV. Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells. Mol Cancer Ther. 2004;3(7):833–8.PubMedGoogle Scholar
  87. 87.
    Rousseau J, Escriou V, Perrot P, Picarda G, Charrier C, Scherman D, et al. Advantages of bioluminescence imaging to follow siRNA or chemotherapeutic treatments in osteosarcoma preclinical models. Cancer Gene Ther. 2010;17(6):387–97.PubMedCrossRefGoogle Scholar
  88. 88.
    Fu Z, Deng B, Liao Y, Shan L, Yin F, Wang Z, et al. The anti-tumor effect of shikonin on osteosarcoma by inducing RIP1 and RIP3 dependent necroptosis. BMC Cancer. 2013;13(1):580.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 2008;4(5):313–21.PubMedCrossRefGoogle Scholar
  90. 90.
    He S, Wang L, Miao L, Wang T, Du F, Zhao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell. 2009;137(6):1100–11.PubMedCrossRefGoogle Scholar
  91. 91.
    Zhang D-W, Shao J, Lin J, Zhang N, Lu B-J, Lin S-C, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 2009;325(5938):332–6.PubMedCrossRefGoogle Scholar
  92. 92.
    Dhule SS, Penfornis P, Frazier T, Walker R, Feldman J, Tan G, et al. Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomedicine: Nanotechnol Biol Med. 2012;8(4):440–51.CrossRefGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Orthopedics, Shanghai First People’s HospitalNanjing Medical UniversityShanghaiChina
  2. 2.Department of Orthopedics, Shanghai First People’s Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Department of Orthopedics, Shanghai 10th People’s Hospital, School of MedicineTongji UniversityShanghaiChina

Personalised recommendations