Skip to main content

Advertisement

Log in

Skewed mutational spectrum of RET proto-oncogene Exon10 in Iranian patients with medullary thyroid carcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

Thyroid cancer is the most common endocrine malignant tumor. Medullary thyroid carcinoma (MTC) is an aggressive tumor arising from calcitonin-producing parafollicular cells. MTC has autosomal dominant inheritance and accounts for 5–10 % of all thyroid cancers. It occurs in hereditary (25 %, hMTC) and sporadic (75 %, sMTC) forms. Gain-of-function mutations in the REarranged during transfection (RET) proto-oncogene have been identified in 98 % of hMTC and 50 % of sMTC. The aim of this investigation was to identify mutation(s) in the much conserved RET exon10 in Iranian MTC patients. We started screening patients with MTC for RET in 2001. This study included 347 individuals (154 with sMTC, 38 with FMTC, 8 with multiple endocrine neoplasia type 2A [MEN2A], 3 with MEN2B, and 3 with pheochromocytoma; 207 index cases and 140 relatives). Germline mutation screening of RET exon10 was performed with PCR-DNA sequencing. A total of 14 missense mutations (10 mutations in men and 4 in women) were identified in cysteine codons 611, 618, and 620 (exon10) in 11 patients and three first-degree relatives as follows: four C611Y (three with FMTC and one relative), one C618R (FMTC), one C618S (sMTC), one C620G (sMTC), four C620R (one with FMTC and three with sMTC), and three C620F (one with FMTC and two relatives). In the present study, six different mutations were identified in exon10 of RET in 14 patients with sMTC and FMTC that were restricted to codons 611, 618, and 620, but not in codon 609. This data showed a skewed pattern of RET exon10 mutation compared to other populations. No mutation was found for MEN2A, MEN2B, and pheochromocytoma in exon10 in this population. In the most common mutations in exon10, the FMTC and sMTC patients were C611Y and C620R, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ibanez CF. Structure and physiology of the RET receptor tyrosine kinase. Cold Spring Harbor Perspect Biol. 2013;5(2). doi:10.1101/cshperspect.a009134.

  2. Ishizaka Y, Itoh F, Tahira T, Ikeda I, Sugimura T, Tucker J, et al. Human ret proto-oncogene mapped to chromosome 10q11.2. Oncogene. 1989;4(12):1519–21.

    CAS  PubMed  Google Scholar 

  3. Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell. 1985;42(2):581–8.

    Article  CAS  PubMed  Google Scholar 

  4. Schuchardt A, D'Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor. Ret Nature. 1994;367(6461):380–3. doi:10.1038/367380a0.

    Article  CAS  PubMed  Google Scholar 

  5. Grieco M, Santoro M, Berlingieri MT, Melillo RM, Donghi R, Bongarzone I, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell. 1990;60(4):557–63.

    Article  CAS  PubMed  Google Scholar 

  6. Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013;13(3):184–99. doi:10.1038/nrc3431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer. 2006;6(4):292–306. doi:10.1038/nrc1836.

    Article  CAS  PubMed  Google Scholar 

  8. Oberg K. The genetics of neuroendocrine tumors. Semin Oncol. 2013;40(1):37–44. doi:10.1053/j.seminoncol.2012.11.005.

    Article  PubMed  Google Scholar 

  9. Aj J. Ein fall von metastasierenden amyloidtumoren (lymphosarcoma). Virchows Arch. 1906;185:251–67.

    Article  Google Scholar 

  10. Campbell MJ, Seib CD, Gosnell J. Vandetanib and the management of advanced medullary thyroid cancer. Curr Opin Oncol. 2013;25(1):39–43. doi:10.1097/CCO.0b013e32835a42b9.

    Article  CAS  PubMed  Google Scholar 

  11. Roman S, Lin R, Sosa JA. Prognosis of medullary thyroid carcinoma: demographic, clinical, and pathologic predictors of survival in 1252 cases. Cancer. 2006;107(9):2134–42. doi:10.1002/cncr.22244.

    Article  PubMed  Google Scholar 

  12. Thakker RV. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol. 2013. doi:10.1016/j.mce.2013.08.002.

    PubMed  Google Scholar 

  13. Romei C, Cosci B, Renzini G, Bottici V, Molinaro E, Agate L, et al. RET genetic screening of sporadic medullary thyroid cancer (MTC) allows the preclinical diagnosis of unsuspected gene carriers and the identification of a relevant percentage of hidden familial MTC (FMTC). Clin Endocrinol (Oxf). 2011;74(2):241–7. doi:10.1111/j.1365-2265.2010.03900.x.

    Article  CAS  Google Scholar 

  14. Brandi ML, Gagel RF, Angeli A, Bilezikian JP, Beck-Peccoz P, Bordi C, et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J Clin Endocrinol Metab. 2001;86(12):5658–71.

    Article  CAS  PubMed  Google Scholar 

  15. Kloos RT, Eng C, Evans DB, Francis GL, Gagel RF, Gharib H, et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid. 2009;19(6):565–612. doi:10.1089/thy.2008.0403.

    Article  PubMed  Google Scholar 

  16. Figlioli G, Landi S, Romei C, Elisei R, Gemignani F. Medullary thyroid carcinoma (MTC) and RET proto-oncogene: mutation spectrum in the familial cases and a meta-analysis of studies on the sporadic form. Mutat Res. 2013;752(1):36–44. doi:10.1016/j.mrrev.2012.09.002.

    Article  CAS  PubMed  Google Scholar 

  17. Boikos SA, Stratakis CA. Molecular mechanisms of medullary thyroid carcinoma: current approaches in diagnosis and treatment. Histol Histopathol. 2008;23(1):109–16.

    CAS  PubMed  Google Scholar 

  18. Manie S, Santoro M, Fusco A, Billaud M. The RET receptor: function in development and dysfunction in congenital malformation. Trends Genet. 2001;17(10):580–9.

    Article  CAS  PubMed  Google Scholar 

  19. Edery P, Lyonnet S, Mulligan LM, Pelet A, Dow E, Abel L, et al. Mutations of the RET proto-oncogene in Hirschsprung's disease. Nature. 1994;367(6461):378–80. doi:10.1038/367378a0.

    Article  CAS  PubMed  Google Scholar 

  20. Elisei R, Cosci B, Romei C, Bottici V, Renzini G, Molinaro E, et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab. 2008;93(3):682–7. doi:10.1210/jc.2007-1714.

    Article  CAS  PubMed  Google Scholar 

  21. Pasini B, Rossi R, Ambrosio MR, Zatelli MC, Gullo M, Gobbo M, et al. RET mutation profile and variable clinical manifestations in a family with multiple endocrine neoplasia type 2A and Hirschsprung's disease. Surgery. 2002;131(4):373–81.

    Article  PubMed  Google Scholar 

  22. Hedayati M, Zarif Yeganeh M, Sheikhol Eslami S, Rezghi Barez S, Hoghooghi Rad L, Azizi F. Predominant RET Germline mutations in exons 10, 11, and 16 in Iranian Patients with hereditary medullary thyroid carcinoma. J Thyroid Res. 2011;2011:264248. doi:10.4061/2011/264248.

    PubMed  PubMed Central  Google Scholar 

  23. Alvandi E, Akrami SM, Chiani M, Hedayati M, Nayer BN, Tehrani MR, et al. Molecular analysis of the RET proto-oncogene key exons in patients with medullary thyroid carcinoma: a comprehensive study of the Iranian population. Thyroid. 2011;21(4):373–82. doi:10.1089/thy.2010.0267.

    Article  CAS  PubMed  Google Scholar 

  24. Hedayati M, Nabipour I, Rezaei-Ghaleh N, Azizi F. Germline RET mutations in exons 10 and 11: an Iranian survey of 57 medullary thyroid carcinoma cases. Med J Malaysia. 2006;61(5):564–9.

    CAS  PubMed  Google Scholar 

  25. Sheikholeslami S, Zarif Yeganeh M, Hoghooghi Rad L, Ghadaksaz Golab H, Hedayati M. Haplotype frequency of G691S/S904S in the RET proto-oncogene in patients with medullary thyroid carcinoma. Iran J Pub Health. 2014;43(2):235–40.

    CAS  Google Scholar 

  26. Mulligan LM, Marsh DJ, Robinson BG, Schuffenecker I, Zedenius J, Lips CJ, et al. Genotype-phenotype correlation in multiple endocrine neoplasia type 2: report of the International RET Mutation Consortium. J Intern Med. 1995;238(4):343–6.

    Article  CAS  PubMed  Google Scholar 

  27. Eng C, Clayton D, Schuffenecker I, Lenoir G, Cote G, Gagel RF, et al. The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. Int RET Mut Con Anal JAMA. 1996;276(19):1575–9.

    CAS  Google Scholar 

  28. Qari F. RET codon 618 mutations in Saudi families with multiple endocrine neoplasia type 2A and familial medullary thyroid carcinoma. Ann Saudi Med. 2013;33(2):155–8. doi:10.5144/0256-4947.2013.155.

    Article  PubMed  Google Scholar 

  29. Neocleous V, Skordis N, Portides G, Efstathiou E, Costi C, Ioannou N, et al. RET proto-oncogene mutations are restricted to codon 618 in Cypriot families with multiple endocrine neoplasia 2. J Endocrinol Invest. 2011;34(10):764–9. doi:10.3275/7605.

    CAS  PubMed  Google Scholar 

  30. Frank-Raue K, Rybicki LA, Erlic Z, Schweizer H, Winter A, Milos I, et al. Risk profiles and penetrance estimations in multiple endocrine neoplasia type 2A caused by germline RET mutations located in exon 10. Hum Mutat. 2011;32(1):51–8. doi:10.1002/humu.21385.

    Article  CAS  PubMed  Google Scholar 

  31. Paun DL, Mohora M, Duta C, Dumitrache C. Genetic testing for multiple endocrine neoplasia type 2. Rom J Intern Med. 2008;46(2):159–63.

    CAS  PubMed  Google Scholar 

  32. Baloh RH, Tansey MG, Lampe PA, Fahrner TJ, Enomoto H, Simburger KS, et al. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron. 1998;21(6):1291–302.

    Article  CAS  PubMed  Google Scholar 

  33. Kotzbauer PT, Lampe PA, Heuckeroth RO, Golden JP, Creedon DJ, Johnson Jr EM, et al. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature. 1996;384(6608):467–70. doi:10.1038/384467a0.

    Article  CAS  PubMed  Google Scholar 

  34. Milbrandt J, de Sauvage FJ, Fahrner TJ, Baloh RH, Leitner ML, Tansey MG, et al. Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron. 1998;20(2):245–53.

    Article  CAS  PubMed  Google Scholar 

  35. Treanor JJ, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD, et al. Characterization of a multicomponent receptor for GDNF. Nature. 1996;382(6586):80–3. doi:10.1038/382080a0.

    Article  CAS  PubMed  Google Scholar 

  36. Kjaer S, Ibanez CF. Identification of a surface for binding to the GDNF-GFR alpha 1 complex in the first cadherin-like domain of RET. J Biol Chem. 2003;278(48):47898–904. doi:10.1074/jbc.M309772200.

    Article  CAS  PubMed  Google Scholar 

  37. Trupp M, Arenas E, Fainzilber M, Nilsson AS, Sieber BA, Grigoriou M, et al. Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature. 1996;381(6585):785–9. doi:10.1038/381785a0.

    Article  CAS  PubMed  Google Scholar 

  38. Arlt DH, Baur B, Wagner B, Hoppner W. A novel type of mutation in the cysteine rich domain of the RET receptor causes ligand independent activation. Oncogene. 2000;19(30):3445–8. doi:10.1038/sj.onc.1203688.

    Article  CAS  PubMed  Google Scholar 

  39. Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M, et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science. 1995;267(5196):381–3.

    Article  CAS  PubMed  Google Scholar 

  40. Agrawal N, Jiao Y, Sausen M, Leary R, Bettegowda C, Roberts NJ, et al. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metab. 2013;98(2):E364–9. doi:10.1210/jc.2012-2703.

    Article  CAS  PubMed  Google Scholar 

  41. Frank-Raue K, Rondot S, Schulze E, Raue F. Change in the spectrum of RET mutations diagnosed between 1994 and 2006. Clin Lab. 2007;53(5–6):273–82.

    CAS  PubMed  Google Scholar 

  42. Machens A, Niccoli-Sire P, Hoegel J, Frank-Raue K, van Vroonhoven TJ, Roeher HD, et al. Early malignant progression of hereditary medullary thyroid cancer. N Engl J Med. 2003;349(16):1517–25. doi:10.1056/NEJMoa012915.

    Article  CAS  PubMed  Google Scholar 

  43. Mulligan LM, Eng C, Healey CS, Clayton D, Kwok JB, Gardner E, et al. Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC. Nat Genet. 1994;6(1):70–4. doi:10.1038/ng0194-70.

    Article  CAS  PubMed  Google Scholar 

  44. Iwashita T, Asai N, Murakami H, Matsuyama M, Takahashi M. Identification of tyrosine residues that are essential for transforming activity of the ret proto-oncogene with MEN2A or MEN2B mutation. Oncogene. 1996;12(3):481–7.

    CAS  PubMed  Google Scholar 

  45. Smith DP, Houghton C, Ponder BA. Germline mutation of RET codon 883 in two cases of de novo MEN 2B. Oncogene. 1997;15(10):1213–7. doi:10.1038/sj.onc.1201481.

    Article  CAS  PubMed  Google Scholar 

  46. Gimm O, Marsh DJ, Andrew SD, Frilling A, Dahia PL, Mulligan LM, et al. Germline dinucleotide mutation in codon 883 of the RET proto-oncogene in multiple endocrine neoplasia type 2B without codon 918 mutation. J Clin Endocrinol Metab. 1997;82(11):3902–4.

    Article  CAS  PubMed  Google Scholar 

  47. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, et al. The Human Gene Mutation Database (HGMD®): 2003 update. Hum Mutat. 2003;21:577–81.

  48. Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, et al. Ensembl 2013. Nucleic Acids Res. 2013;41:D48–55. doi:10.1093/nar/gks1236.

  49. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2014;43:D805–11. doi:10.1093/nar/gku1075.

  50. Database of Single Nucleotide Polymorphisms (dbSNP). Bethesda (MD): National Center for Biotechnology Information, National Library of Medicine. (dbSNP Build ID: {build ID}). 2013. http://www.ncbi.nlm.nih.gov/SNP/.

Download references

Acknowledgments

This study was supported by a research grant from the Cellular and Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences. The authors are indebted to the patients, their families, and several endocrinology specialists for their kind collaboration. The authors express their gratitude to the staff of the molecular genetic laboratory at the Endocrine Research Center for their skillful technical assistance.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Hedayati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarif Yeganeh, M., Sheikholeslami, S., Dehbashi Behbahani, G. et al. Skewed mutational spectrum of RET proto-oncogene Exon10 in Iranian patients with medullary thyroid carcinoma. Tumor Biol. 36, 5225–5231 (2015). https://doi.org/10.1007/s13277-015-3179-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3179-7

Keywords

Navigation