Advertisement

Tumor Biology

, Volume 36, Issue 7, pp 5215–5223 | Cite as

Curcumin suppresses lymphatic vessel density in an in vivo human gastric cancer model

  • Wei Da
  • Jinshui Zhu
  • Long Wang
  • Qun Sun
Research Article

Abstract

This study aimed to assess the effects of curcumin on lymphatic vessel density (LVD) in an in vivo model of gastric cancer using the gastric cancer cell line, SGC-7901. Gastric tumor-bearing nude mice were treated with saline or 40, 80, or 160 mg kg−1 day−1 curcumin for 8 weeks. The results indicated that the tumor volumes were significantly lower in mice treated with 80 and 160 mg kg−1 day−1 curcumin as compared with that of the control group (both P < 0.001). In addition, both 80 and 160 mg kg−1 day−1 curcumin significantly reduced LVD (both P < 0.01). Although immunohistochemical analysis showed that curcumin did not significantly alter the expression of prospero homeobox 1 (Prox-1), podoplanin, and vascular endothelial growth factor receptor 3 (VEGFR-3), 160 mg kg−1 day−1 curcumin significantly decreased the expression of Prox-1, podoplanin, and VEGFR-3 levels as detected by Western blot analysis (P ≤ 0.03). Downregulation of lymphatic vessel endothelial receptor 1 (LYVE-1), Prox-1, podoplanin, and VEGFR-3 mRNA expression by curcumin was also detected (all P < 0.05). Furthermore, the apoptosis rates of tumor cells increased with curcumin in a concentration-dependent manner (all P < 0.001). Thus, curcumin may inhibit gastric cancer lymph node metastasis. Our findings provide theoretical evidence and an experimental basis for further analysis of the clinical application of curcumin in the therapy of gastric cancer.

Keywords

Apoptosis Curcumin Gastric cancer Lymphangiogenesis Lymphatic metastasis 

Notes

Acknowledgments

None

Conflicts of interest

None

References

  1. 1.
    Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics. CA Cancer J Clin. 2007;57:43–66.CrossRefPubMedGoogle Scholar
  2. 2.
    Crew KD, Neugut AI. Epidemiology of gastric cancer. World J Gastroenterol. 2006;12:354–62.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Adachi Y, Shiraishi N, Suematsu T, Shiromizu A, Yamaguchi K, Kitano S. Most important lymph node information in gastric cancer: multivariate prognostic study. Ann Surg Oncol. 2000;7:503–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Coşkun U, Akyürek N, Dursun A, Yamaç D. Peritumoral lymphatic microvessel density associated with tumor progression and poor prognosis in gastric carcinoma. J Surg Res. 2010;164:110–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Ozmen F, Ozmen MM, Ozdemir E, Moran M, Seçkin S, Guc D, et al. Relationship between LYVE-1, VEGFR-3 and CD44 gene expressions and lymphatic metastasis in gastric cancer. World J Gastroenterol. 2011;17:3220–8.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Jüttner S, Wissmann C, Jöns T, Vieth M, Hertel J, Gretschel S, et al. Vascular endothelial growth factor-D and its receptor VEGFR-3: two novel independent prognostic markers in gastric adenocarcinoma. J Clin Oncol. 2006;24:228–40.CrossRefPubMedGoogle Scholar
  7. 7.
    Mohandas KM, Desai DC. Epidemiology of digestive tract cancers in India. Indian J Gastroenterol. 1990;18:118–21.Google Scholar
  8. 8.
    Chung MY, Lim TG, Lee KW. Molecular mechanisms of chemopreventive phytochemicals against gastroenterological cancer development. World J Gastroenterol. 2013;19:984–93.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cai XZ, Huang WY, Qiao Y, Du SY, Chen Y, Chen D, et al. Inhibitory effects of curcumin on gastric cancer cells: a proteomic study of molecular targets. Phytomedicine. 2013;20:495–505.CrossRefPubMedGoogle Scholar
  10. 10.
    Mahajanakatti AB, Murthy G, Sharma N, Skariyachan S. Exploring inhibitory potential of Curcumin against various cancer targets by in silico virtual screening. Interdiscip Sci. 2014;6:13–24.CrossRefPubMedGoogle Scholar
  11. 11.
    Cai XZ, Wang J, Li XD, Wang GL, Liu FN, Cheng MS, et al. Curcumin suppresses proliferation and invasion in human gastric cancer cells by downregulation of PAK1 activity and cyclin D1 expression. Cancer Biol Ther. 2009;8:1360–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Yu LL, Wu JG, Dai N, Yu HG, Si JM. Curcumin reverses chemoresistance of human gastric cancer cells by downregulating the NF-κB transcription factor. Oncol Rep. 2011;26:1197–203.PubMedGoogle Scholar
  13. 13.
    Matsuo M, Sakurai H, Koizumi K, Saiki I. Curcumin inhibits the formation of capillary-like tubes by rat lymphatic endothelial cells. Cancer Lett. 2007;251:288–95.CrossRefPubMedGoogle Scholar
  14. 14.
    Fujimoto A, Ishikawa Y, Akishima-Fukasawa Y, Ito K, Akasaka Y, Tamai S, et al. Significance of lymphatic invasion on regional lymph node metastasis in early gastric cancer using LYVE-1 immunohistochemical analysis. Am J Clin Pathol. 2007;127:82–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Yuanming L, Feng G, Lei T, Ying W. Quantitative analysis of lymphangiogenic markers in human gastroenteric tumor. Arch Med Res. 2007;38:106–12.CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang J, Ji J, Yuan F, Zhu L, Yan C, Yu YY, et al. Cyclooxygenase-2 expression is associated with VEGF-C and lymph node metastases in gastric cancer patients. Biomed Pharmacother. 2005;59:S285–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Chen FZ, Mo XM, Wang QP, Li J, Zhang L. Effects of rosiglitazone on the growth and lymphangiogenesis of human gastric cancer transplanted in nude mice. Oncol Rep. 2013;30:2705–12.PubMedGoogle Scholar
  18. 18.
    Ma M, Zhang Y, Zhang L, et al. Establishment of a nude mouse model of human gastric cancer and characterization of its biological features. Acta Laboratorium Animalis Scientia Sinica. 2012;20:57–60.Google Scholar
  19. 19.
    Huang DS, Zhang L, Kuang HB. Study inhibitory effect of curcumin on angiogenesis of S180 sarcoma in mice. Modern Hospital. 2009;9:5–6.Google Scholar
  20. 20.
    Weidner N. Current pathologic methods for measuring in tratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat. 1996;36:169–80.CrossRefGoogle Scholar
  21. 21.
    Lee K, Park do J, Choe G, Kim HH, Kim WH, Lee HS. Increased intratumoral lymphatic vessel density correlates with lymph node metastasis in early gastric carcinoma. Ann Surg Oncol. 2010;17:73–80.CrossRefPubMedGoogle Scholar
  22. 22.
    Nakamura KK. Importance of lymph vessels in gastric cancer: a prognostic indicator in general and a predictor for lymph node metastasis in early stage cancer. J Clin Pathol. 2006;59:77–82.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rudno-Rudzinska J, Kielan W, Grzebieniak Z, Dziegiel P, Donizy P, Mazur G, et al. High density of peritumoral lymphatic vessels measured by D2-40/podoplanin and LYVE-1 expression in gastric cancer patients: an excellent prognostic indicator or a false friend? Gastric Cancer. 2013;16:513–20.CrossRefPubMedGoogle Scholar
  24. 24.
    Gordon EJ, Gale NW, Harvey NL. Expression of the hyaluronan receptor LYVE-1 is not restricted to the lymphatic vasculature: LYVE-1 is also expressed on embryonic blood vessels. Dev Dyn. 2008;237:1901–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Jackson DG. Biology of the lymphatic marker LYVE-1 and applications in research into lymphatic trafficking and lymphangiogenesis. Acta Pathol Microbiol Immunol Scand. 2004;112:526–38.CrossRefGoogle Scholar
  26. 26.
    Karkkainen MJ, Petrova TV. Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene. 2000;19:5598–605.CrossRefPubMedGoogle Scholar
  27. 27.
    Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med. 2001;7:186–91.CrossRefPubMedGoogle Scholar
  28. 28.
    Saharinen P, Tammela T, Karkkainen MJ, Alitalo K. Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. Trends Immunol. 2004;25:387–95.CrossRefPubMedGoogle Scholar
  29. 29.
    Han FH, Li HM, Zheng DH, He YL, Zhan WH. The effect of the expression of vascular endothelial growth factor (VEGF)-C and VEGF receptor-3 on the clinical outcome in patients with gastric carcinoma. Eur J Surg Oncol. 2010;36:1172–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Yashiro M, Shinto O, Nakamura K, Tendo M, Matsuoka T, Matsuzaki T, et al. Effects of VEGFR-3 phosphorylation inhibitor on lymph node metastasis in an orthotopic diffuse-type gastric carcinoma model. Br J Cancer. 2009;101:1100–6.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hachisuka T, Narikiyo M, Yamada Y, Ishikawa H, Ueno M, Uchida H, et al. High lymphatic vessel density correlates with overexpression of VEGF-C in gastric cancer. Oncol Rep. 2005;13:733–7.PubMedGoogle Scholar
  32. 32.
    Kigure W, Fujii T, Sutoh T, Morita H, Katoh T, Yajima RN, et al. The association of VEGF-C expression with tumor lymphatic vessel density and lymph node metastasis in patients with gastric cancer and gastrointestinal stromal tumor. Hepatogastroenterology. 2013;60:277–80.PubMedGoogle Scholar
  33. 33.
    Agaimy A, Carney JA. Lymphatics and D2-40/podoplanin expression in gastrointestinal stromal tumours of the stomach with and without lymph node metastasis: an immunohistochemical study with special reference to the Carney triad. J Clin Pathol. 2010;63:229–34.CrossRefPubMedGoogle Scholar
  34. 34.
    Brey EM, Lalani Z, Johnston C, Wong M, McIntire LV, Duke PJ, et al. Automated selection of DAB-labeled tissue for immunohistochemical quantification. J Histochem Cytochem. 2003;51(5):575–84.CrossRefPubMedGoogle Scholar
  35. 35.
    Buchynska L, Kashuba E, Szekely L. Immunofluorescence staining of paraffin sections: creating DAB staining like virtual digital images using CMYK color conversion. Exp Oncol. 2008;30(4):327–9.PubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of GastroenterologySixth People’s Hospital Affiliated to Shanghai Jiaotong UniversityShanghaiChina

Personalised recommendations