Advertisement

Tumor Biology

, Volume 36, Issue 7, pp 5179–5186 | Cite as

A polysaccharide from Andrographis paniculata induces mitochondrial-mediated apoptosis in human hepatoma cell line (HepG2)

  • Yanmei Zou
  • Hua Xiong
  • Huihua Xiong
  • Tao Lu
  • Feng Zhu
  • Zhiyong Luo
  • Xianglin Yuan
  • Yihua Wang
Research Article

Abstract

In the present study, we investigated the effects and action mechanisms of a purified polysaccharide (APWP) from Andrographis paniculata, on human hepatocellular carcinoma (HCC) HepG2 cells. The results showed that APWP was able to suppress the proliferation of HepG2 cells via inducing apoptosis. Western blot analysis revealed that dose-dependent increase in proapoptotic Bax protein and no change in antiapoptotic Bcl-2 protein in APWP-treated cells. Furthermore, exposure of tumor cells to APWP resulted in a loss of mitochondrial membrane potential (MMP) and the release of cytochrome c from the mitochondria to the cytosol. Besides, caspase-9 and caspase-3 were activated while caspase-8 was not affected in HepG2 cells followed by APWP treatment. All these results point clearly to the involvement of mitochondria-mediated signaling pathway in APWP-induced apoptosis and strongly suggest that APWP seems to be safe and effective in the prevention and treatment of HCC.

Keywords

Andrographis paniculata Polysaccharides Hepatocellular carcinoma Apoptosis Mitochondria 

Notes

Acknowledgments

This work was supported by grants from the National Science Foundation of China (Nos. 81201779 and 81372434)

Conflicts of interest

None

References

  1. 1.
    Masuzaki R, Omata M. Treatment of hepatocellular carcinoma. Indian J Gastroenterol. 2008;27:113–22.PubMedGoogle Scholar
  2. 2.
    Zhu ZZ, Cong WM, Liu SF, Dong H, Zhu GS, Wu MC. Homozygosity for Pro of p53 Arg72Pro as a potential risk factor for hepatocellular carcinoma in Chinese population. World J Gastroenterol. 2005;11:289–92.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Urruticoechea A, Alemany R, Balart J, Villanueva A, Viñals F, Capellá G. Recent advances in cancer therapy: an overview. Curr Pharm Des. 2010;16:3–10.CrossRefPubMedGoogle Scholar
  4. 4.
    Chung KY, Saltz LB. Adjuvant therapy of colon cancer: current status and future directions. Cancer J. 2007;13:192–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Kellof GJ. Perspective on cancer chemoprevention research and drug development. Adv Cancer Res. 2000;78:199–334.CrossRefGoogle Scholar
  6. 6.
    Deng XK, Yin W, Li WD, Yin FZ, Lu XY, Zhang XC, et al. The anti-tumor effects of alkaloids from the seeds of Strychnos nux-vomica on HepG2 cells and its possible mechanism. J Ethnopharmacol. 2006;106:179–86.CrossRefPubMedGoogle Scholar
  7. 7.
    Chiu LC, Ho TS, Wong EY, Ooi VE. Ethyl acetate extract of Patrinia scabiosaefolia downregulates anti-apoptotic Bcl-2/Bcl-X(L) expression, and induces apoptosis in human breast carcinoma MCF-7 cells independent of caspase-9 activation. J Ethnopharmacol. 2006;105:263–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Tian QE, De Li H, Yan M, Cai HL, Tan QY, Zhang WY. Effects of Astragalus polysaccharides on P-glycoprotein efflux pump function and protein expression in H22 hepatoma cells in vitro. BMC Complement Altern Med. 2012;12:94.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Konkimalla VB, Efferth T. Evidence-based Chinese medicine for cancer therapy. J Ethnopharmacol. 2008;116:207–10.CrossRefPubMedGoogle Scholar
  10. 10.
    Ji DB, Ye J, Jiang YM, Qian BW. Anti-tumor effect of Liqi, a traditional Chinese medicine prescription, in tumor bearing mice. BMC Complement Altern Med. 2009;9:20.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Coon JT, Ernst E. Andrographis paniculata in treatment of upper respiratory tract infections: a systemic review of safety and efficacy. Planta Med. 2004;70:293–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Kuroyanagi M, Sato M, Ueno A, Nishi K. Flavanoids from Andrographis paniculata. Chem Pharm Bull. 1987;35:4429–35.CrossRefGoogle Scholar
  13. 13.
    Saxena S, Jain DC, Bhakuni RS, Sharma RP. Chemistry and pharmacology of Andrographis species. Indian Drugs. 1998;35:458–67.Google Scholar
  14. 14.
    Shen YC, Chen CF, Chiou WF. Andrographolide prevents oxygen radical production by human neutrophils: possible mechanism(s) involved in its anti-inflammatory effect. Br J Pharmacol. 2002;135:399–406.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sheeja K, Shihab PK, Kuttan G. Antioxidant and anti-inflammatory activities of the plant Andrographis paniculata Nees. Immunopharmacol Immunotoxicol. 2006;28:129–40.CrossRefPubMedGoogle Scholar
  16. 16.
    Kumar RA, Sridevi K, Kumar NV, Nanduri S, Rajagopal S. Anticancer and immunostimulatory compounds from Andrographis paniculata. J Ethnopharmacol. 2004;92:291–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Nanduri S, Nyavanandi VK, Thunuguntla SS, Kasu S, Pallerla MK, Ram PS, et al. Synthesis and structure–activity relationships of andrographolide analogues as novel cytotoxic agents. Bioorg Med Chem Lett. 2004;14:4711–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Cheung HY, Cheung SH, Li J, Cheung CS, Lai WP, Fong WF, et al. Andrographolide isolated from Andrographis paniculata induces cell cycle arrest and mitochondrial-mediated apoptosis in human leukemic HL-60 cells. Planta Med. 2005;71:1106–11.CrossRefPubMedGoogle Scholar
  19. 19.
    Puri A, Saxena R, Saxena RP, Saxena KC, Srivastava V, Tandon JS. Immunostimulant agents from Andrographis paniculata. J Nat Prod. 1993;56:995–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Iruretagoyena MI, Tobar JA, González PA, Sepúlveda SE, Figueroa CA, Burgos RA, et al. Andrographolide interferes with T cell activation and reduces experimental autoimmune encephalomyelitis in the mouse. J Pharmacol Exp Ther. 2005;312:366–72.CrossRefPubMedGoogle Scholar
  21. 21.
    Calabrese C, Berman SH, Babish JG, Ma X, Shinto L, Dorr M, et al. A phase I trial of andrographolide in HIV positive patients and normal volunteers. Phytother Res. 2000;14:333–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Madav S, Tripathi HC, Tandan SK, Dinesh K, Lal J. Anti-6+ allergic activity of andrographolide. Indian J Pharm Sci. 1998;60:176–8.Google Scholar
  23. 23.
    Koteswara Rao Y, Vimalamma G, Rao CV, Tzeng YM. Flavonoids and andrographolides from Andrographis paniculata. Phytochemistry. 2004;65:2317–21.CrossRefPubMedGoogle Scholar
  24. 24.
    Matsuda T, Kuroyanagi M, Sugiyama S, Umehara K, Ueno A, Nishi K. Cell differentiation-inducing diterpenes from Andrographis paniculata Nees. Chem Pharm Bull (Tokyo). 1994;42:1216–25.CrossRefGoogle Scholar
  25. 25.
    Rajani M, Shrivastava N, Ravishankara MN. A rapid method for isolation of andrographolide from andrographis paniculata nees (kalmegh). Pharm Biol. 2000;38:204–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Wu J, Zhou J, Lang Y, Yao L, Xu H, Shi H, et al. A polysaccharide from Armillaria mellea exhibits strong in vitro anticancer activity via apoptosis-involved mechanisms. Int J Biol Macromol. 2012;51:663–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang W, Zheng L, Zhang Z, Hai CX. Protective effect of a water-soluble polysaccharide from Salvia miltiorrhiza Bunge on insulin resistance in rats. Carbohydr Polym. 2012;89:890–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Staub AM. Removal of protein-Sevag method. Methods Carbohydr Chem. 1965;5:5–6.Google Scholar
  29. 29.
    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350–6.CrossRefGoogle Scholar
  30. 30.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein binding. Anal Biochem. 1976;72:248–54.CrossRefPubMedGoogle Scholar
  31. 31.
    Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973;54:484–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Honda S, Akao E, Suzuki S, Okuda M, Kakehi K, Nakamura J. Highperformance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl-5-pyrazolone derivatives. Anal Biochem. 1989;180:351–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Hu Q, Pan R, Wang L, Peng B, Tang J, Liu X. Platycodon grandiflorum induces apoptosis in SKOV3 human ovarian cancer cells through mitochondrial-dependent pathway. Am J Chin Med. 2010;38:373–86.CrossRefPubMedGoogle Scholar
  34. 34.
    Tsuda H, Ohshima Y, Nomoto H, Fujita K, Matsuda E, Iigo M, et al. Cancer prevention by natural compounds. Drug Metab Pharmacokinet. 2004;19:245–63.CrossRefPubMedGoogle Scholar
  35. 35.
    Reed JC, Pellecchia M. Apoptosis-based therapies for hematologic malignancies. Blood. 2005;106:408–18.CrossRefPubMedGoogle Scholar
  36. 36.
    Wu WY, Guo HZ, Qu GQ, Han J, Guo DA. Mechanisms of pseudolaric Acid B-induced apoptosis in bel-7402 cell lines. Am J Chin Med. 2006;34:887–99.CrossRefPubMedGoogle Scholar
  37. 37.
    Zheng J, Li C, Wu X, Liu M, Sun X, Yang Y, et al. Astrocyte elevated gene-1 (AEG-1) shRNA sensitizes Huaier polysaccharide (HP)-induced anti-metastatic potency via inactivating downstream P13K/Akt pathway as well as augmenting cell-mediated immune response. Tumour Biol. 2014;35:4219–24.CrossRefPubMedGoogle Scholar
  38. 38.
    Miao S, Mao X, Pei R, Miao S, Xiang C, Lv Y, et al. Antitumor activity of polysaccharides from Lepista sordida against laryngocarcinoma in vitro and in vivo. Int J Biol Macromol. 2013;60:235–40.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang Y, Sun S, Chen J, Ren P, Hu Y, Cao Z, et al. Oxymatrine induces mitochondria dependent apoptosis in human osteosarcoma MNNG/HOS cells through inhibition of PI3K/Akt pathway. Tumour Biol. 2014;35:1619–25.CrossRefPubMedGoogle Scholar
  40. 40.
    van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry. 1998;31:1–9.CrossRefPubMedGoogle Scholar
  41. 41.
    Andree HA, Reutelingsperger CP, Hauptmann R, Hemker HC, Hermens WT, Willems GM. Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipids bilayers. J Biol Chem. 1990;265:4923–8.PubMedGoogle Scholar
  42. 42.
    Mazzini G, Ferrari C, Erba E. Dual excitation multi-fluorescence flow cytometry for detailed analyses of viability and apoptotic cell transition. Eur J Histochem. 2003;47:289–98.PubMedGoogle Scholar
  43. 43.
    Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labeled Annexin V. J Immunol Methods. 1995;184:39–51.CrossRefPubMedGoogle Scholar
  44. 44.
    Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol. 1999;15:269–90.CrossRefPubMedGoogle Scholar
  45. 45.
    Eskes R, Desagher S, Antonsson B, Martinou JC. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol. 2000;20:929–35.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Martin SJ, Green DR. Protease activation during apoptosis: death by a thousand cuts? Cell. 1995;82:349–52.CrossRefPubMedGoogle Scholar
  47. 47.
    Johnson CR, Jarvis WD. Caspase-9 regulation: an update. Apoptosis. 2004;9:423–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Troy CM, Shelanski ML. Caspase-2 redux. Cell Death Differ. 2003;10:101–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Kuo PL, Chen CY, Hsu YL. Isoobtusilactone A induces cell cycle arrest and apoptosis through reactive oxygen species/apoptosis signal-regulating kinase 1 signaling pathway in human breast cancer cells. Cancer Res. 2007;67:7406–20.CrossRefPubMedGoogle Scholar
  50. 50.
    Schwarz M, Andrade-Navarro MA, Gross A. Mitochondrial carriers and pores: key regulators of the mitochondrial apoptotic program? Apoptosis. 2007;12:869–76.CrossRefPubMedGoogle Scholar
  51. 51.
    Newmeyer DD, Ferguson-Miller S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell. 2003;112:481–90.CrossRefPubMedGoogle Scholar
  52. 52.
    Nakazawa Y, Kamijo T, Koike K, Noda T. ARF tumor suppressor induces mitochondria-dependent apoptosis by modulation of mitochondrial Bcl-2 family proteins. J Biol Chem. 2003;278:27888–95.CrossRefPubMedGoogle Scholar
  53. 53.
    Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science. 1997;275:1129–32.CrossRefPubMedGoogle Scholar
  54. 54.
    Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997;275:1132–6.CrossRefPubMedGoogle Scholar
  55. 55.
    Basañez G, Sharpe JC, Galanis J, Brandt TB, Hardwick JM, Zimmerberg J. Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J Biol Chem. 2002;277:49360–5.CrossRefPubMedGoogle Scholar
  56. 56.
    Yang SH, Chien CM, Lu MC, Lin YH, Hu XW, Lin SR. Up-regulation of Bax and endonuclease G, and down-modulation of Bcl-XL involved in cardiotoxin III-induced apoptosis in K562 cells. Exp Mol Med. 2006;38:435–44.CrossRefPubMedGoogle Scholar
  57. 57.
    Wang C, Youle RJ. The role of mitochondria in apoptosis*. Annu Rev Genet. 2009;43:95–118.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Wang X, Chen Y, Wang J, Liu Z, Zhao S. Antitumor activity of a sulfated polysaccharide from Enteromorpha intestinalis targeted against hepatoma through mitochondrial pathway. Tumour Biol. 2014;35:1641–7.CrossRefPubMedGoogle Scholar
  59. 59.
    Qin H, Du X, Zhang Y, Wang R. Platycodin D, a triterpenoid saponin from Platycodon grandiflorum, induces G2/M arrest and apoptosis in human hepatoma HepG2 cells by modulating the PI3K/Akt pathway. Tumour Biol. 2014;35:1267–74.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Yanmei Zou
    • 1
  • Hua Xiong
    • 1
  • Huihua Xiong
    • 1
  • Tao Lu
    • 2
  • Feng Zhu
    • 2
  • Zhiyong Luo
    • 3
  • Xianglin Yuan
    • 1
  • Yihua Wang
    • 4
  1. 1.Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Biochemistry and Molecular Biology, School of Basic MedicineHuazhong University of Science and TechnologyWuhanChina
  3. 3.Division of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  4. 4.Ludwig Institute for Cancer Research Ltd., Nuffield, Department of Clinical MedicineUniversity of OxfordOxfordUK

Personalised recommendations