Tumor Biology

, Volume 36, Issue 7, pp 5095–5102 | Cite as

Macrophage immigration inhibitory factor promotes cell proliferation and inhibits apoptosis of cervical adenocarcinoma

  • Peng Guo
  • Jing Wang
  • Junxiu Liu
  • Meng Xia
  • Wen Li
  • Mian He
Research Article


As a multifunctional cytokine, macrophage migration inhibitory factor (MIF) is associated with inflammation and tumorigenesis; however, the role of MIF in cervical adenocarcinoma (ADC) is not fully understood. In this study, we aimed to examine the expression of MIF in ADC and explore the mechanism of MIF in ADC progression. MIF expression was positively related to ADC clinicopathological features of carcinoma diameter and lymph node metastasis. MIF knockdown induced cell cycle arrest of G1/S transition in ADC cells, upregulation of the expressions of p21 and p27, and downregulation of the expressions of Cdk4, CyclinD2, and CyclinE2. In MIF knockdown cells, the expressions of proapoptotic proteins of Bax, caspase-3, cleaved caspase-3, and cleaved-PARP were upregulated, and the expressions of antiapoptotic proteins of Bcl-2, pAkt, and p53 were downregulated. It indicated that MIF knockdown inhibited cell proliferation and induced apoptosis in ADC cells. MIF might be a novel molecular marker in diagnosis and therapy of ADC.


Macrophage migration inhibitory factor Cervical adenocarcinoma Cell proliferation Apoptosis 



The National Natural Science Foundation of China (No. 81172337, 30973395); Natural Science Foundation of Guangdong Province of China (S2011010003516, S2011010004793)

Conflicts of interest



  1. 1.
    Jemal A, Bray F, Center M, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Seoud M, Tjalma WA, Ronsse V. Cervical adenocarcinoma: moving towards better prevention. Vaccine. 2011;29:9148–58.CrossRefPubMedGoogle Scholar
  3. 3.
    Mathew A, George PS. Trends in incidence and mortality rates of squamous cell carcinoma and adenocarcinoma of cervix-worldwide. Asian Pac J Cancer Prev. 2009;10:645–50.PubMedGoogle Scholar
  4. 4.
    Galic V, Herzog TJ, Lewin SN, Neugut AI, Burke WM, Lu YS, et al. Prognostic significance of adenocarcinoma histology in women with cervical cancer. Gynecol Oncol. 2012;5:36–41.Google Scholar
  5. 5.
    McLaughlin-Drubin ME, Meyers J, Munger K. Cancer associated human papil-lomaviruses. Curr Opin Virol. 2012;2:459–66.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Grabowska AK, Riemer AB. The invisible enemy—how human papillomaviruses avoid recognition and clearance by the host immune system. OpenVirol J. 2012;6:249–56.Google Scholar
  7. 7.
    Plummer M, Schiffman M, Castle PE, Maucort-Boulch D, Wheeler CM, ALTS. Group. A 2-year prospective study of human papillomavirus persistence among women with a cytological diagnosis of atypical squamous cells of undetermined significance or low-grade squamous intraepithelial lesion. J Infect Dis. 2007;195:1582–9.CrossRefPubMedGoogle Scholar
  8. 8.
    de Freitas AC, Coimbra EC, Leitão Mda C. Molecular targets of HPV oncoproteins: potential biomarkers for cervical carcinogenesis. Biochim Biophys Acta. 2014;1845:91–103.PubMedGoogle Scholar
  9. 9.
    Grieb G, Merk M, Bernhagen J, Bucala R. Macrophage migration inhibitory factor (MIF): a promising biomarker. Drug News Perspect. 2010;23:257–64.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Santos LL, Morand EF. Macrophage migration inhibitory factor: a key cytokine in RA. SLE and atherosclerosis. Clin Chim Acta. 2009;399:1–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Conroy H, Mawhinney L, Donnelly SC. Inflammation and cancer: macrophage migration inhibitory factor (MIF) - the potential missing link. QJM. 2010;103:831–6.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mitchell RA. Mechanisms and effectors of MIF-dependent promotion of tumourigenesis. Cell Signal. 2004;16:13–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Brock SE, Rendon BE, Xin D, Yaddanapudi K, Mitchell RA. MIF family members cooperatively inhibit p53 expression and activity. PLoS. 2014;9:e99795.CrossRefGoogle Scholar
  14. 14.
    Richard V, Kindt N, Decaestecker C, Gabius HJ, Laurent G, Noël JC, et al. Involvement of macrophage migration inhibitory factor and its receptor (CD74) in human breast cancer. Oncol Rep. 2014;32:523–9.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Cheng RJ, Deng WG, Niu CB, Li YY, Fu Y. Expression of macrophage migration inhibitory factor and CD74 in cervical squamous cell carcinoma. Int J Gynecol Cancer. 2011;21:1004–12.CrossRefPubMedGoogle Scholar
  16. 16.
    Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–12.CrossRefPubMedGoogle Scholar
  17. 17.
    Gudas JM, Payton M, Thukral S, Chen E, Bass M, Robinson MO, et al. Cyclin E2, a novel G1 cyclin that binds Cdk2 and is aberrantly expressed in human cancers. Mol Cell Biol. 1999;19:612–22.CrossRefPubMedGoogle Scholar
  18. 18.
    Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, et al. The p21 (Cip1) and p27 (Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 1999;18:1571–83.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yoshino T, Shiina H, Urakami S, Kikuno N, Yoneda T, Shigeno K, et al. Bcl-2 expression as a predictive marker of hormone-refractory prostate cancer treated with taxane-based chemotherapy. Clin Cancer Res. 2006;33:6116–24.CrossRefGoogle Scholar
  20. 20.
    MacCarthy-Morrogh L, Mouzakiti A, Townsend P, Brimmell M, Packham G. Bcl-2-related proteins and cancer. Biochem Soc Trans. 1999;27:785–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin Cancer Biol. 1993;4:327–32.PubMedGoogle Scholar
  22. 22.
    Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26:1324–37.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hassa PO, Hottiger MO. The diverse biological roles of mammalian PARPs, a small but powerful family of poly-ADP-ribose polymerases. Front Biosci. 2008;13:3046–82.CrossRefPubMedGoogle Scholar
  24. 24.
    Gibson BA, Kraus WL. New insights into the molecular and cellular functions of poly (ADP ribose) and PARPs. Nat Rev Mol Cell Biol. 2012;13:411–24.CrossRefPubMedGoogle Scholar
  25. 25.
    Qi Z, Liu M, Liu Y, Zhang M, Yang G. Tetramethpxychalcone, a chalcone derivative, suppress proliferation, blocks cell cycle progression and induces apoptosis of human ovarion cancer cells. PLoS One. 2014;9:e105206.CrossRefGoogle Scholar
  26. 26.
    Winter RN, Kramer A, Borkowski A, Kyprianou N. Loss of caspase-1 and caspase-3 protein expression in human prostate cancer. Cancer Res. 2001;61:1227–32.PubMedGoogle Scholar
  27. 27.
    Chauhan D, Pandey P, Ogata A, Teoh G, Krett N, Halgren R, et al. Cytochrome c-dependent and independent induction of apoptosis in multiple myeloma cells. J Biol Chem. 1997;272:29995–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Baumann R, Casaulta C, Simon D, Conus S, Yousefi S, Simon HU. Macrophage migration inhibitory factor delays apoptosis in neutrophils by inhibiting the mitochondria-dependent death pathway. FASEB J. 2003;17:2221–30.CrossRefPubMedGoogle Scholar
  29. 29.
    Downward J. How BAD, phosphorylation is good for survival. Nat Cell Biol. 1999;1:E33–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell. 1995;80:285–91.CrossRefPubMedGoogle Scholar
  31. 31.
    Fernando R, Foster JS, Bible A, Strom A, Pestell RG, Rao M, et al. Breast cancer cell proliferation is inhibited by BAD: regulation of cyclin D1. J Biol Chem. 2007;282:28864–73.CrossRefPubMedGoogle Scholar
  32. 32.
    Li J, Man L, Dan L, Bojiang C, Wen Z, Lin M, et al. BAD overexpression inhibits cell growth and induces apoptosis via mitochondrial-dependent pathway in non-small cell lung cancer. Cancer Cell Int. 2013;13:53.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lue H, Thiele M, Franz J, Dahl E, Speckgens S, Leng L, et al. Macrophage migration inhibitory factor (MIF) promotes cell survival by activation of the AKT pathway and role for CSN5/JAB1 in the control of autocrine MIF activity. Oncogene. 2007;26:5046–59.CrossRefPubMedGoogle Scholar
  34. 34.
    Wan X, Harkavy B, Shen N, Grohar P, Helman LJ. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene. 2007;26:1932–40.CrossRefPubMedGoogle Scholar
  35. 35.
    Kandel ES, Hay N. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res. 1999;253:210–29.CrossRefPubMedGoogle Scholar
  36. 36.
    Blanco-Aparicio C, Renner O, Leal JF, Carnero A. PTEN, more than the AKT pathway. Carcinogenesis. 2007;28:1379–86.CrossRefPubMedGoogle Scholar
  37. 37.
    Huang XH, Jian WH, Wu ZF, Zhao J, Wang H, Li W, et al. Small interfering RNA (siRNA)-mediated knockdown of macrophage migration inhibitory factor (MIF) suppressed cyclin D1 expression and hepatocellular carcinoma cell proliferation. Oncotarget. 2014;5:5570–80.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mitsiades CS, Mitsiades N, Poulaki V, Schlossman R, Akiyama M, Chauhan D, et al. Activation of NF-kappaB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: therapeutic implications. Oncogene. 2002;21:5673–83.CrossRefPubMedGoogle Scholar
  39. 39.
    Fingerle-Rowson G, Petrenko O, Metz CN, Forsthuber TG, Mitchell R, Mitchell R, et al. The p53-dependent effects of macrophage migration inhibitory factor revealed by gene targeting. Proc Natl Acad Sci U S A. 2003;100:9354–9.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mitchell RA, Liao H, Chesney J, Fingerle-Rowson G, Baugh J, David J, et al. Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: regulatory role in the innate immune response. Proc Natl Acad Sci U S A. 2002;99:345–50.CrossRefPubMedGoogle Scholar
  41. 41.
    Gore Y, Starlets D, Maharshak N, Becker-Herman S, Kaneyuki U, Leng L, et al. Macrophage migration inhibitory factor induces B cell survival by activation of a CD74-CD44 receptor complex. J Biol Chem. 2008;283:2784–92.CrossRefPubMedGoogle Scholar
  42. 42.
    Schwartz V, Lue H, Kraemer S, Korbiel J, Krohn R, Ohl K, et al. A functional heteromeric MIF receptor formed by CD74 and CXCR4. FEBS Lett. 2009;583:2749–57.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A, Koenen RR, et al. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med. 2007;13:587–96.CrossRefPubMedGoogle Scholar
  44. 44.
    Chatterjee M, Borst O, Walker B, Fotinos A, Vogel S, Seizer P, et al. Macrophage migration inhibitory factor limits activation-induced apoptosis of platelets via CXCR7-dependent Akt signaling. Circ Res. 2014;115:939–49.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Obstetrics and GynecologyThe First Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
  2. 2.Laboratory of General SurgeryThe First Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina

Personalised recommendations