Skip to main content

Advertisement

Log in

miR-342-3p targets RAP2B to suppress proliferation and invasion of non-small cell lung cancer cells

  • Research Article
  • Published:
Tumor Biology

Abstract

MicroRNAs (miRNAs) play critical roles in cancer development and progression. In this study, we examined the roles and molecular mechanisms of miR-342-3p in human non-small cell lung cancer (NSCLC). The results showed that miR-342-3p is downregulated in NSCLC cell lines and tissues, and its overexpression induces significant inhibition of NSCLC cell proliferation, invasion, and tumor growth in nude mice. In addition, miR-342-3p repressed RAP2B expression through interactions with its 3′-UTR region. Restoration of RAP2B expression reversed miR-342-3p-mediated inhibitory activity in NSCLC cells. Finally, analyses of miR-342-3p and RAP2B levels in NSCLCs revealed that miR-342-3p inversely correlated with RAP2B mRNA expression. Our collective findings provide preliminary evidence that miR-342-3p acts as a tumor suppressor in NSCLC through repression of RAP2B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  2. Yokota J, Kohno T. Molecular footprints of human lung cancer progression. Cancer Sci. 2004;95:197–204.

    Article  CAS  PubMed  Google Scholar 

  3. Pallis AG, Fennell DA, Szutowicz E, Leighl NB, Greillier L, Dziadziuszko R. Biomarkers of clinical benefit for anti-epidermal growth factor receptor agents in patients with non-small-cell lung cancer. Br J Cancer. 2011;105:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cai J, Wu J, Zhang H, Fang L, Huang Y, Yang Y, et al. Mir-186 downregulation correlates with poor survival in lung adenocarcinoma, where it interferes with cell-cycle regulation. Cancer Res. 2013;73:756–66.

    Article  CAS  PubMed  Google Scholar 

  5. Bartel DP. Micrornas: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ambros V. The functions of animal micrornas. Nature. 2004;431:350–5.

    Article  CAS  PubMed  Google Scholar 

  7. Kloosterman WP, Plasterk RH. The diverse functions of micrornas in animal development and disease. Dev Cell. 2006;11:441–50.

    Article  CAS  PubMed  Google Scholar 

  8. Wang R, Wang ZX, Yang JS, Pan X, De W, Chen LB. Microrna-451 functions as a tumor suppressor in human non-small cell lung cancer by targeting ras-related protein 14 (rab14). Oncogene. 2011;30:2644–58.

    Article  CAS  PubMed  Google Scholar 

  9. Esquela-Kerscher A, Slack FJ. Oncomirs—micrornas with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  10. Kent OA, Mendell JT. A small piece in the cancer puzzle: micrornas as tumor suppressors and oncogenes. Oncogene. 2006;25:6188–96.

    Article  CAS  PubMed  Google Scholar 

  11. Acunzo M, Visone R, Romano G, Veronese A, Lovat F, Palmieri D, et al. Mir-130a targets met and induces trail-sensitivity in nsclc by downregulating mir-221 and 222. Oncogene. 2012;31:634–42.

    CAS  PubMed  Google Scholar 

  12. Gu H, Yang T, Fu S, Chen X, Guo L, Ni Y. Microrna-490-3p inhibits proliferation of a549 lung cancer cells by targeting ccnd1. Biochem Biophys Res Commun. 2014;444:104–8.

    Article  CAS  PubMed  Google Scholar 

  13. Ke Y, Zhao W, Xiong J, Cao R. Downregulation of mir-16 promotes growth and motility by targeting hdgf in non-small cell lung cancer cells. FEBS Lett. 2013;587:3153–7.

    Article  CAS  PubMed  Google Scholar 

  14. Cai J, Fang L, Huang Y, Li R, Yuan J, Yang Y, et al. Mir-205 targets pten and phlpp2 to augment akt signaling and drive malignant phenotypes in non-small cell lung cancer. Cancer Res. 2013;73:5402–15.

    Article  CAS  PubMed  Google Scholar 

  15. Wang J, Tian X, Han R, Zhang X, Wang X, Shen H, et al. Downregulation of mir-486-5p contributes to tumor progression and metastasis by targeting protumorigenic arhgap5 in lung cancer. Oncogene. 2014;33:1181–9.

    Article  CAS  PubMed  Google Scholar 

  16. Dacic S, Kelly L, Shuai Y, Nikiforova MN. Mirna expression profiling of lung adenocarcinomas: correlation with mutational status. Mod Pathol. 2010;23:1577–82.

    Article  CAS  PubMed  Google Scholar 

  17. Wang H, Wu J, Meng X, Ying X, Zuo Y, Liu R, et al. Microrna-342 inhibits colorectal cancer cell proliferation and invasion by directly targeting DNA methyltransferase 1. Carcinogenesis. 2011;32:1033–42.

    Article  CAS  PubMed  Google Scholar 

  18. Li XR, Chu HJ, Lv T, Wang L, Kong SF, Dai SZ. Mir-342-3p suppresses proliferation, migration and invasion by targeting foxm1 in human cervical cancer. FEBS Lett. 2014;588:3298–307.

    Article  CAS  PubMed  Google Scholar 

  19. Tiscornia G, Singer O, Verma IM. Production and purification of lentiviral vectors. Nat Protoc. 2006;1:241–5.

    Article  CAS  PubMed  Google Scholar 

  20. Yi C, Wang Q, Wang L, Huang Y, Li L, Liu L, et al. Mir-663, a microrna targeting p21(waf1/cip1), promotes the proliferation and tumorigenesis of nasopharyngeal carcinoma. Oncogene. 2012;31:4421–33.

    Article  CAS  PubMed  Google Scholar 

  21. Zheng B, Liang L, Wang C, Huang S, Cao X, Zha R, et al. Microrna-148a suppresses tumor cell invasion and metastasis by downregulating rock1 in gastric cancer. Clin Cancer Res. 2011;17:7574–83.

    Article  CAS  PubMed  Google Scholar 

  22. Fernandez S, Risolino M, Mandia N, Talotta F, Soini Y, Incoronato M, et al. Mir-340 inhibits tumor cell proliferation and induces apoptosis by targeting multiple negative regulators of p27 in non-small cell lung cancer. Oncogene. 2014.

  23. Gu Y, Cheng Y, Song Y, Zhang Z, Deng M, Wang C, et al. Microrna-493 suppresses tumor growth, invasion and metastasis of lung cancer by regulating e2f1. PLoS One. 2014;9:e102602.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fourie NH, Peace RM, Abey SK, Sherwin LB, Rahim-Williams B, Smyser PA, et al. Elevated circulating mir-150 and mir-342-3p in patients with irritable bowel syndrome. Exp Mol Pathol. 2014;96:422–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Montag J, Hitt R, Opitz L, Schulz-Schaeffer WJ, Hunsmann G, Motzkus D. Upregulation of mirna hsa-mir-342-3p in experimental and idiopathic prion disease. Mol Neurodegener. 2009;4:36.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Grady WM, Parkin RK, Mitchell PS, Lee JH, Kim YH, Tsuchiya KD, et al. Epigenetic silencing of the intronic microrna hsa-mir-342 and its host gene evl in colorectal cancer. Oncogene. 2008;27:3880–8.

    Article  CAS  PubMed  Google Scholar 

  27. Fayyad-Kazan H, Bitar N, Najar M, Lewalle P, Fayyad-Kazan M, Badran R, et al. Circulating mir-150 and mir-342 in plasma are novel potential biomarkers for acute myeloid leukemia. J Transl Med. 2013;11:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He YJ, Wu JZ, Ji MH, Ma T, Qiao EQ, Ma R, et al. Mir-342 is associated with estrogen receptor-alpha expression and response to tamoxifen in breast cancer. Exp Ther Med. 2013;5:813–8.

    PubMed  PubMed Central  Google Scholar 

  29. Tao K, Yang J, Guo Z, Hu Y, Sheng H, Gao H, et al. Prognostic value of mir-221-3p, mir-342-3p and mir-491-5p expression in colon cancer. Am J Transl Res. 2014;6:391–401.

    PubMed  PubMed Central  Google Scholar 

  30. Farrell FX, Ohmstede CA, Reep BR, Lapetina EG. Cdna sequence of a new ras-related gene (rap2b) isolated from human platelets with sequence homology to rap2. Nucleic Acids Res. 1990;18:4281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ohmstede CA, Farrell FX, Reep BR, Clemetson KJ, Lapetina EG. Rap2b: a ras-related gtp-binding protein from platelets. Proc Natl Acad Sci U S A. 1990;87:6527–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang X, He Y, Lee KH, Dubois W, Li Z, Wu X, et al. Rap2b, a novel p53 target, regulates p53-mediated pro-survival function. Cell Cycle. 2013;12:1279–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Di JH, Qu DB, Lu Z, Li LT, Cheng Q, Xin Y, Zhang LZ, Zhang Y, Zheng JN. Rap2b promotes migration and invasion of human suprarenal epithelioma. Tumour Biol 2014

  34. Liu Y, Sun W, Zhang K, Zheng H, Ma Y, Lin D, et al. Identification of genes differentially expressed in human primary lung squamous cell carcinoma. Lung Cancer. 2007;56:307–17.

    Article  PubMed  Google Scholar 

  35. Fu G, Liu Y, Yuan J, Zheng H, Shi T, Lei W, et al. identification and functional analysis of a novel candidate oncogene rap2b in lung cancer. Zhongguo Fei Ai Za Zhi. 2009;12:273–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by two grant from the National Natural Science Foundation of China (No. 81071924 and 81372520).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Mei.

Additional information

Xiao Xie and Hongtao Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Liu, H., Wang, M. et al. miR-342-3p targets RAP2B to suppress proliferation and invasion of non-small cell lung cancer cells. Tumor Biol. 36, 5031–5038 (2015). https://doi.org/10.1007/s13277-015-3154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3154-3

Keywords

Navigation