Advertisement

Tumor Biology

, Volume 36, Issue 7, pp 5001–5009 | Cite as

MicroRNA-211, a direct negative regulator of CDC25B expression, inhibits triple-negative breast cancer cells’ growth and migration

Research Article

Abstract

The non-coding microRNAs (miRNAs) have tissue- and disease-specific expression patterns. Dysregulation of miRNAs has been associated with initiation and progression of oncogenesis in humans. The abnormal expression of CDC25B phosphatases detected in a number of tumors implies that their dysregulation is involved in malignant transformation. Using miRNA target prediction software, we found that miR-211 could target the 3′UTR sequence of CDC25B. To shed light on their roles of miR-211 in breast cancer, the expression of miR-211 was examined by real-time RT-PCR in breast cancer and normal tissues. MiR-211 is significantly downregulated in breast cancer. MiR-211 re-expression suppressed cell growth, cell cycle, migration, and invasion in triple-negative breast cancer (TNBC) cell line MDA-MB231. Luciferase expression from a reporter vector containing the CDC25B −3′UTR was decreased when this construct was transfected with miR-211. The over-expression of miR-211 suppressed the endogenous CDC25B protein level in TNBC cells. For the first time, we demonstrate that miRNA-211 is a direct negative regulator of CDC25B expression in TNBC cells, alters other related target proteins CCNB1 and FOXM1, and then inhibits breast cancer cells growth, migration, and invasion and lead G2/M arrest. The transcriptional loss of miR-211 and the resultant increase in CDC25B expression facilitate increased genomic instability at an early stage of tumor development.

Keywords

MicroRNA-211 CDC25B CCNB1 FOXM1 Breast cancer 

Notes

Conflicts of interest

None

References

  1. 1.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMedGoogle Scholar
  2. 2.
    Fernandez Y, Cueva J, Palomo AG, Ramos M, de Juan A, Calvo L, et al. Novel therapeutic approaches to the treatment of metastatic breast cancer. Cancer Treat Rev. 2010;36:33–42.CrossRefPubMedGoogle Scholar
  3. 3.
    Elias AD. Triple-negative breast cancer: a short review. Am J Clin Oncol. 2010;33:637–45.CrossRefPubMedGoogle Scholar
  4. 4.
    De Laurentiis M, Cianniello D, Caputo R, Stanzione B, Arpino G, Cinieri S, et al. Treatment of triple negative breast cancer (tnbc): current options and future perspectives. Cancer Treat Rev. 2010;36 Suppl 3:S80–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Chacon RD, Costanzo MV. Triple-negative breast cancer. Breast Cancer Res. 2010;12 Suppl 2:S3.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bartel DP. Micrornas: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRefPubMedGoogle Scholar
  7. 7.
    Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Drakaki A, Iliopoulos D. MicroRNA gene networks in oncogenesis. Curr Genomics. 2009;10:35–41.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Griseri P, Pages G. Regulation of the mRNA half-life in breast cancer. World J Clin Oncol. 2014;5:323–34.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Luo EC, Chang YC, Sher YP, Huang WY, Chuang LL, Chiu YC, et al. Microrna-769-3p down-regulates ndrg1 and enhances apoptosis in mcf-7 cells during reoxygenation. Sci Rep. 2014;4:5908.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Ahmad A, Sethi S, Chen W, Ali-Fehmi R, Mittal S, Sarkar FH. Up-regulation of microRNA-10b is associated with the development of breast cancer brain metastasis. Am J Transl Res. 2014;6:384–90.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Boutros R, Dozier C, Ducommun B. The when and wheres of cdc25 phosphatases. Curr Opin Cell Biol. 2006;18:185–91.CrossRefPubMedGoogle Scholar
  13. 13.
    Boutros R, Lobjois V, Ducommun B. Cdc25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer. 2007;7:495–507.CrossRefPubMedGoogle Scholar
  14. 14.
    Goldstone S, Pavey S, Forrest A, Sinnamon J, Gabrielli B. Cdc25-dependent activation of cyclin a/cdk2 is blocked in g2 phase arrested cells independently of atm/atr. Oncogene. 2001;20:921–32.CrossRefPubMedGoogle Scholar
  15. 15.
    Gabrielli BG, De Souza CP, Tonks ID, Clark JM, Hayward NK, Ellem KA. Cytoplasmic accumulation of cdc25b phosphatase in mitosis triggers centrosomal microtubule nucleation in hela cells. J Cell Sci. 1996;109(Pt 5):1081–93.PubMedGoogle Scholar
  16. 16.
    Karlsson C, Katich S, Hagting A, Hoffmann I, Pines J. Cdc25b and cdc25c differ markedly in their properties as initiators of mitosis. J Cell Biol. 1999;146:573–84.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Loffler H, Rebacz B, Ho AD, Lukas J, Bartek J, Kramer A. Chk1-dependent regulation of cdc25b functions to coordinate mitotic events. Cell Cycle. 2006;5:2543–7.CrossRefPubMedGoogle Scholar
  18. 18.
    van Vugt MA, Bras A, Medema RH. Polo-like kinase-1 controls recovery from a g2 DNA damage-induced arrest in mammalian cells. Mol Cell. 2004;15:799–811.CrossRefPubMedGoogle Scholar
  19. 19.
    Dalvai M, Mondesert O, Bugler B, Manenti S, Ducommun B, Dozier C. Doxorubicin promotes transcriptional upregulation of cdc25b in cancer cells by releasing sp1 from the promoter. Oncogene. 2013;32:5123–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Wu CF, Liu S, Lee YC, Wang R, Sun S, Yin F, et al. Rsk promotes g2/m transition through activating phosphorylation of cdc25a and cdc25b. Oncogene. 2014;33:2385–94.CrossRefPubMedGoogle Scholar
  21. 21.
    Lyons J, Bastian BC, McCormick F. Mc1r and camp signaling inhibit cdc25b activity and delay cell cycle progression in melanoma cells. Proc Natl Acad Sci U S A. 2013;110:13845–50.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Liffers ST, Munding JB, Vogt M, Kuhlmann JD, Verdoodt B, Nambiar S, et al. Microrna-148a is down-regulated in human pancreatic ductal adenocarcinomas and regulates cell survival by targeting cdc25b. Lab Invest. 2011;91:1472–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Rajewsky N. MicroRNA target predictions in animals. Nat Genet. 2006;38(Suppl):S8–S13.CrossRefPubMedGoogle Scholar
  24. 24.
    Carthew RW. Gene regulation by microRNAs. Curr Opin Genet Dev. 2006;16:203–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Med. 2009;60:167–79.CrossRefPubMedGoogle Scholar
  26. 26.
    Ventura A, Jacks T. MicroRNAs and cancer: short RNAs go a long way. Cell. 2009;136:586–91.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065–70.CrossRefPubMedGoogle Scholar
  28. 28.
    Margue C, Philippidou D, Reinsbach SE, Schmitt M, Behrmann I, Kreis S. New target genes of mitf-induced microrna-211 contribute to melanoma cell invasion. PLoS One. 2013;8:e73473.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cai C, Ashktorab H, Pang X, Zhao Y, Sha W, Liu Y, et al. Microrna-211 expression promotes colorectal cancer cell growth in vitro and in vivo by targeting tumor suppressor chd5. PLoS One. 2012;7:e29750.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sakurai E, Maesawa C, Shibazaki M, Yasuhira S, Oikawa H, Sato M, et al. Downregulation of microrna-211 is involved in expression of preferentially expressed antigen of melanoma in melanoma cells. Int J Oncol. 2011;39:665–72.PubMedGoogle Scholar
  31. 31.
    Brenton JD, Carey LA, Ahmed AA, Caldas C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol. 2005;23:7350–60.CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang Z, Zhang G, Kong C. High expression of cdc25b and low expression of 14-3-3sigma is associated with the development and poor prognosis in urothelial carcinoma of bladder. Tumour Biol. 2014;35:2503–12.CrossRefPubMedGoogle Scholar
  33. 33.
    Yu XY, Zhang Z, Zhang GJ, Guo KF, Kong CZ. Knockdown of cdc25b in renal cell carcinoma is associated with decreased malignant features. Asian Pac J Cancer Prev. 2012;13:931–5.CrossRefPubMedGoogle Scholar
  34. 34.
    Yan X, Chua MS, He J, So SK. Small interfering rna targeting cdc25b inhibits liver tumor growth in vitro and in vivo. Mol Cancer. 2008;7:19.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Khan S, Brougham CL, Ryan J, Sahrudin A, O’Neill G, Wall D, et al. Mir-379 regulates cyclin b1 expression and is decreased in breast cancer. PLoS One. 2013;8:e68753.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wei Z, Hurtt R, Gu T, Bodzin AS, Koch WJ, Doria C. Grk2 negatively regulates igf-1r signaling pathway and cyclins’ expression in hepg2 cells. J Cell Physiol. 2013;228:1897–901.CrossRefPubMedGoogle Scholar
  37. 37.
    Raychaudhuri P, Park HJ. Foxm1: a master regulator of tumor metastasis. Cancer Res. 2011;71:4329–33.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chu XY, Zhu ZM, Chen LB, Wang JH, Su QS, Yang JR, et al. Foxm1 expression correlates with tumor invasion and a poor prognosis of colorectal cancer. Acta Histochem. 2012;114:755–62.CrossRefPubMedGoogle Scholar
  39. 39.
    Ahmad A, Wang Z, Kong D, Ali S, Li Y, Banerjee S, et al. Foxm1 down-regulation leads to inhibition of proliferation, migration and invasion of breast cancer cells through the modulation of extra-cellular matrix degrading factors. Breast Cancer Res Treat. 2010;122:337–46.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Pancreatic and Breast SurgeryShengjing Hospital of China Medical UniversityShenyangChina

Personalised recommendations