Skip to main content

Advertisement

Log in

Enhanced antiproliferative and apoptosis effect of paclitaxel-loaded polymeric micelles against non-small cell lung cancers

  • Research Article
  • Published:
Tumor Biology

Abstract

Amphiphilic copolymer monomethoxy poly(ethylene glycol)-poly(caprolactone)-d-α-tocopheryl polyethylene glycol 1000 succinate (MPEG-PCL-TPGS) was prepared. In the present study, MPEG-PCL-TPGS was used as a novel nanovehicle for the delivery of paclitaxel (PTX) in the treatment of resistant lung cancers. The PTX-loaded MPEG-PCL-TPGS (PTX/MPT) micelles exhibited sustained release profile (168 h) with accelerated drug release at acidic pH conditions. The blank polymeric micelles showed excellent biocompatibility with cell viability of >85 %, making it suitable for all in vivo applications. PTX/MPT micelles displayed superior cytotoxicity in A-549 lung cancer cells than that of free PTX. The selective delivery of PTX to cancer cells resulted in enhanced cancer cell death. The PTX/MPT micelles showed higher cellular uptake via endocytosis pathways. The PTX-bound micelles preferentially arrested the cells at G2/M phase and showed a marked increase in sub G1 cell population (∼20 %). The pharmacokinetic study revealed a long blood circulation for PTX/MPT micelles. Finally, micellar formulation showed a remarkable tumor suppression effect in resistant A549/Taxol cells bearing xenograft nude mice along with no toxicity profile. The results indicate that the PTX-loaded biocompatible polymeric nanosystem could act as a potential delivery system for the treatment of lung carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69.

    Article  PubMed  Google Scholar 

  2. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  3. Wao H, Mhaskar R, Kumar A, Miladinovic B, Djulbegovic B. Survival of patients with non-small cell lung cancer without treatment: a systematic review and meta-analysis. Syst Rev. 2013;2:10.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Govindan R, Page N, Morgensztern D, Read W, Tierney R, Vlahiotis A, et al. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol. 2006;24:4539.

    Article  PubMed  Google Scholar 

  5. Reck M, Heigener DF, Mok T, Soria JC, Rabe KF. Management of non-small-cell lung cancer: recent developments. Lancet. 2013;382:709–19.

    Article  CAS  PubMed  Google Scholar 

  6. Curran Jr WJ, Paulus R, Langer CJ, Komaki R, Lee JS, Hauser S. Sequential vs. concurrent chemoradiation for stage III non-small cell lung cancer: randomized phase III trial RTOG 9410. J Natl Cancer Inst. 2011;103:1452–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shobha S, Sarah D. Targeted therapy and new anticancer drugs in advanced disease. Thorac Surg Clin. 2013;23:411–9.

    Article  Google Scholar 

  8. Liu J, Meisner D, Kwong E, Wu XY, Johnston MR. Translymphatic chemotherapy by intrapleural placement of gelatin sponge containing biodegradable paclitaxel colloids controls lymphatic metastasis in lung cancer. Cancer Res. 2009;69:1174–81.

    Article  CAS  PubMed  Google Scholar 

  9. Tien H, Dahlberg SE, Sandler AB, Brahmer JR, Schiller JH, Johnson DH. Prognostic Models to predict survival in non-small cell lung cancer patients treated with first-line paclitaxel and carboplatin with or without bevacizumab. J Thorac Oncol. 2012;7:1361–8.

    Article  Google Scholar 

  10. Videira M, Almeida AJ. Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine. 2012;8:1208–15.

    Article  CAS  PubMed  Google Scholar 

  11. Yang R, Shim WS, Cui FD, et al. Enhanced electrostatic interaction between chitosan-modified PLGA nanoparticle and tumor. Int J Pharm. 2009;37:142–7.

    Article  Google Scholar 

  12. Zhang ZP, Lee SH, Gan CW, Feng SS. In vitro and in vivo investigation on PLA-TPGS nanoparticles for controlled and sustained small molecule chemotherapy. Pharm Res. 2008;25:1925–35.

    Article  PubMed  Google Scholar 

  13. Shieh YA, Yang SJ, Wei MF, Shieh MJ. Aptamer-based tumortargeted drug delivery for photodynamic therapy. ACS Nano. 2010;4:1433–42.

    Article  CAS  PubMed  Google Scholar 

  14. Wang T, He N. Preparation, characterization and applications of low molecular-weight alginate–oligochitosan nanocapsules. Nanoscale. 2010;2:230–9.

    Article  CAS  PubMed  Google Scholar 

  15. He N, Wang T, Jiang L, Wang D, Hu Y, Zhang L. Therapy for cerebral ischemic injury with erythropoietin-containing nanoparticles. J Nanosci Nanotechnol. 2010;10:5320–3.

    Article  CAS  PubMed  Google Scholar 

  16. Gou M, Wei X, Men K, et al. PCL/PEG copolymeric nanoparticles: potential nanoplatforms for anticancer agent delivery. Curr Drug Targets. 2011;12:1131–50.

    Article  CAS  PubMed  Google Scholar 

  17. Huang LQ, Chen HB, Zheng Y, Song XS, Liu R, Liu KX, et al. Nanoformulation of d-α-tocopheryl polyethylene glycol 1000 succinate-β-poly(ε-caprolactone-ran-glycolide) diblock copolymer for breast cancer therapy. Integr Biol. 2011;3:993–1002.

    Article  CAS  Google Scholar 

  18. Wang JL, Sun J, Chen Q, et al. Star-shaped copolymer of lysine-linked di-tocopherol polyethylene glycol 2000 succinate for doxorubicin delivery with reversal of multidrug resistance. Biomaterials. 2012;33:6877–88.

    Article  CAS  PubMed  Google Scholar 

  19. Li PY, Lai PS, Hung WC, Syu WJ. Poly(l-lactide)-vitamin E TPGS nanoparticles enhanced the cytotoxicity of doxorubicin in drug-resistant MCF-7 breast cancer cells. Biomacromolecules. 2010;11:2576–82.

    Article  CAS  PubMed  Google Scholar 

  20. Tsai HY, Chiu CC, Lin PC, Chen SH, Huang SJ, Wang LF. Antitumor efficacy of doxorubicin released from crosslinked nanoparticulate chondroitin sulfate/chitosan polyelectrolyte complexes. Macromol Biosci. 2011;11:680–8.

    Article  CAS  PubMed  Google Scholar 

  21. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2004;56:1649–59.

    Article  CAS  PubMed  Google Scholar 

  22. Storm G, Belliot SO, Daemen T, Lasic DD. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Del Rev. 1995;17:31–48.

    Article  CAS  Google Scholar 

  23. Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumortargeted drug delivery based on EPR-effect. Eur J Pharm Biopharm. 2009;71:409–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The work was supported by the Ministry of Health, Xiangya Hospital Central South University, China.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-De Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XY., Zhang, YD. Enhanced antiproliferative and apoptosis effect of paclitaxel-loaded polymeric micelles against non-small cell lung cancers. Tumor Biol. 36, 4949–4959 (2015). https://doi.org/10.1007/s13277-015-3142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3142-7

Keywords

Navigation