Tumor Biology

, Volume 36, Issue 6, pp 4851–4859 | Cite as

Decreased expression of long noncoding RNA MEG3 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer

  • Dan-dan Yin
  • Zhi-jun Liu
  • Erbao Zhang
  • Rong Kong
  • Zhi-hong Zhang
  • Ren-hua Guo
Research Article


Colorectal cancer (CRC) remains an important public health problem in the world. Long noncoding RNA (lncRNA) is an RNA molecular that is longer than 200 nucleotides and cannot be translated into a protein. Recent studies have shown that lncRNAs play important roles in carcinogenesis and cancer metastasis. The aim of this study was to evaluate the expression and biological role of lncRNA maternally expressed gene 3 (MEG3) in colorectal cancer. Quantitative real-time-PCR (qRT-PCR) was performed to investigate the expression of MEG3 in tumor tissues and corresponding nontumor colorectal tissues from 62 patients. The lower expression of MEG3 was remarkably correlated with low histological grade, deep tumor invasion, and advanced tumor node metastasis (TNM) stage. Multivariate analyses revealed that MEG3 expression served as an independent predictor for overall survival. Further experiments revealed that overexpressed MEG3 significantly inhibited CRC cell proliferation both in vitro and in vivo. In conclusion, our study demonstrated that MEG3 is involved in the development and progression of colorectal cancer by regulating cell proliferation and shows that MEG3 may be a potential diagnostic and prognostic target in patients with colorectal cancer.


Long noncoding RNA MEG3 Colorectal cancer Cell proliferation 


Conflicts of interest



  1. 1.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.CrossRefPubMedGoogle Scholar
  2. 2.
    Edwards BK, Ward E, Kohler BA, Eheman C, Zauber AG, Anderson RN, et al. Annual report to the nation on the status of cancer, 1975–2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer. 2010;116:544–73.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21:354–61.CrossRefPubMedGoogle Scholar
  4. 4.
    Mattick JS, Taft RJ, Faulkner GJ. A global view of genomic information—moving beyond the gene and the master regulator. Trends Genet. 2010;26:21–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, et al. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 2013;41:D983–986.CrossRefPubMedGoogle Scholar
  6. 6.
    Tsai MC, Spitale RC, Chang HY. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res. 2011;71:3–7.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Benetatos L, Vartholomatos G, Hatzimichael E. Meg3 imprinted gene contribution in tumorigenesis. Int J Cancer. 2011;129:773–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhou Y, Zhang X, Klibanski A. Meg3 noncoding Rna: a tumor suppressor. J Mol Endocrinol. 2012;48:R45–53.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Schuster-Gossler K, Bilinski P, Sado T, Ferguson-Smith A, Gossler A. The mouse gtl2 gene is differentially expressed during embryonic development, encodes multiple alternatively spliced transcripts, and may act as an RNA. Dev Dyn. 1998;212:214–28.CrossRefPubMedGoogle Scholar
  10. 10.
    da Rocha ST, Edwards CA, Ito M, Ogata T, Ferguson-Smith AC. Genomic imprinting at the mammalian dlk1-dio3 domain. Trends Genet. 2008;24:306–16.CrossRefPubMedGoogle Scholar
  11. 11.
    Wang P, Ren Z, Sun P. Overexpression of the long non-coding RNA meg3 impairs in vitro glioma cell proliferation. J Cell Biochem. 2012;113:1868–74.CrossRefPubMedGoogle Scholar
  12. 12.
    Anwar SL, Krech T, Hasemeier B, Schipper E, Schweitzer N, Vogel A, et al. Loss of imprinting and allelic switching at the dlk1-meg3 locus in human hepatocellular carcinoma. PLoS One. 2012;7:e49462.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ying L, Huang Y, Chen H, Wang Y, Xia L, Chen Y, et al. Downregulated meg3 activates autophagy and increases cell proliferation in bladder cancer. Mol Biosyst. 2013;9:407–11.CrossRefPubMedGoogle Scholar
  14. 14.
    Balik V, Srovnal J, Sulla I, Kalita O, Foltanova T, Vaverka M, et al. Meg3: a novel long noncoding potentially tumour-suppressing RNA in meningiomas. J Neurooncol. 2013;112:1–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, et al. A pituitary-derived meg3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab. 2003;88:5119–26.CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang X, Rice K, Wang Y, Chen W, Zhong Y, Nakayama Y, et al. Maternally expressed gene 3 (meg3) noncoding ribonucleic acid: isoform structure, expression, and functions. Endocrinology. 2010;151:939–47.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, et al. Activation of p53 by meg3 non-coding RNA. J Biol Chem. 2007;282:24731–42.CrossRefPubMedGoogle Scholar
  18. 18.
    Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA hotair reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, et al. Long non-coding RNA anril is required for the prc2 recruitment to and silencing of p15(ink4b) tumor suppressor gene. Oncogene. 2011;30:1956–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Fan Y, Shen B, Tan M, Mu X, Qin Y, Zhang F, et al. Tgf-beta-induced upregulation of malat1 promotes bladder cancer metastasis by associating with suz12. Clin Cancer Res. 2014;20:1531–41.CrossRefPubMedGoogle Scholar
  21. 21.
    Prensner JR, Chen W, Iyer MK, Cao Q, Ma T, Han S, et al. Pcat-1, a long noncoding RNA, regulates brca2 and controls homologous recombination in cancer. Cancer Res. 2014;74:1651–60.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Geng YJ, Xie SL, Li Q, Ma J, Wang GY. Large intervening non-coding RNA hotair is associated with hepatocellular carcinoma progression. J Int Med Res. 2011;39:2119–28.CrossRefPubMedGoogle Scholar
  23. 23.
    Niinuma T, Suzuki H, Nojima M, Nosho K, Yamamoto H, Takamaru H, et al. Upregulation of mir-196a and hotair drive malignant character in gastrointestinal stromal tumors. Cancer Res. 2012;72:1126–36.CrossRefPubMedGoogle Scholar
  24. 24.
    Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, et al. Long noncoding RNA hotair regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 2011;71:6320–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang EB, Kong R, Yin DD, You LH, Sun M, Han L, et al. Long noncoding RNA anril indicates a poor prognosis of gastric cancer and promotes tumor growth by epigenetically silencing of mir-99a/mir-449a. Oncotarget. 2014;5:2276–92.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yin D, He X, Zhang E, Kong R, De W, Zhang Z. Long noncoding RNA gas5 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Med Oncol. 2014;31:253.CrossRefPubMedGoogle Scholar
  27. 27.
    Khaitan D, Dinger ME, Mazar J, Crawford J, Smith MA, Mattick JS, et al. The melanoma-upregulated long noncoding RNA spry4-it1 modulates apoptosis and invasion. Cancer Res. 2011;71:3852–62.CrossRefPubMedGoogle Scholar
  28. 28.
    Reis EM, Verjovski-Almeida S. Perspectives of long non-coding RNAs in cancer diagnostics. Front Genet. 2012;3:32.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Ji Q, Zhang L, Liu X, Zhou L, Wang W, Han Z, Sui H, Tang Y, Wang Y, Liu N, Ren J, Hou F, Li Q. Long non-coding rna malat1 promotes tumour growth and metastasis in colorectal cancer through binding to sfpq and releasing oncogene ptbp2 from sfpq/ptbp2 complex. Br J Cancer. 2014.Google Scholar
  30. 30.
    Han Y, Yang YN, Yuan HH, Zhang TT, Sui H, Wei XL, et al. Uca1, a long non-coding RNA up-regulated in colorectal cancer influences cell proliferation, apoptosis and cell cycle distribution. Pathology. 2014;46:396–401.CrossRefPubMedGoogle Scholar
  31. 31.
    Guo Q, Zhao Y, Chen J, Hu J, Wang S, Zhang D, et al. Braf-activated long non-coding RNA contributes to colorectal cancer migration by inducing epithelial-mesenchymal transition. Oncol Lett. 2014;8:869–75.PubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Cancer Research and Therapy CenterThe Second Affiliated Hospital of Southeast UniversityNanjingChina
  2. 2.Department of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjingChina
  3. 3.Laboratory centerSubei People’s HospitalYangzhouChina
  4. 4.Departments of PathologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
  5. 5.Department of OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina

Personalised recommendations