Advertisement

Tumor Biology

, Volume 36, Issue 6, pp 4763–4771 | Cite as

Genetic analysis and preliminary function study of miR-423 in breast cancer

  • Huanhuan Zhao
  • Ang Gao
  • Zhiqian Zhang
  • Ruoyu Tian
  • Ang Luo
  • Mei Li
  • Dan Zhao
  • Liya Fu
  • Li Fu
  • Jin-Tang Dong
  • Zhengmao Zhu
Research Article

Abstract

Common genetic variants (single nucleotide polymorphisms SNPs) in microRNA (miRNA) genes may alter their maturation or expression and play a role in the formation of human cancer. Recently, the association between the SNP rs6505162 in pre-miR-423 and cancer risk has been frequently evaluated in diverse populations and in a range of cancers. In this study, we determined the genotypes of SNP rs6505162 in 5 matched cell lines (breast cancer cell lines and their corresponding peripheral blood cell lines) and 114 matched clinical specimens (clinical breast carcinoma specimens and their corresponding normal tissues), compared the processing efficiency of pri-miRNA to mature forms between pre-miR-423-12C (wild-type) and pre-miR-423-12A (mutant-type) expression vectors, and evaluated the function of miR-423 on cell proliferation. Our data showed that two out of five breast cancer cell lines and 8.77 % (10/114) of tumors underwent somatic mutations of the rs6505162 SNP, and somatic mutation state was significantly correlated with the expression of clinicopathologic variables, proliferating cell nuclear antigen (PCNA) and mutant p53. The pre-miR-423-12C SNP blocked the endogenous processing of pri-miR-423 to its two mature miRNAs. Interestingly, selected pre-miR-423-12C stable cell population had lower proliferation ability than pre-miR-423-12A stable cell population. Moreover, miR-423 promoted cell proliferation in breast cancer cell lines through its miR-423-3p strand, not miR-423-5p. Taken together, these results suggest that the SNP rs6505162 in pre-miR-423 affects the mature miR expression, and miR-423 plays a potentially oncogenic role in breast tumorigenesis.

Keywords

SNP rs6505162 MiR-423 Breast cancer Somatic mutation Cell proliferation 

Notes

Acknowledgments

This work was supported by the National Nature Science Foundation of China (grant numbers: 81470118, 81272219, 31171250, and 30930038) and the Open Fund of State Key Laboratory of Medicinal Chemical Biology (Nankai University). 

Conflicts of interest

None

References

  1. 1.
    Plasterk RH. Micro RNAs in animal development. Cell. 2006;124(5):877–81.CrossRefPubMedGoogle Scholar
  2. 2.
    Wu M, Jolicoeur N, Li Z, Zhang L, Fortin Y, L'Abbe D, et al. Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis. 2008;29(9):1710–6.CrossRefPubMedGoogle Scholar
  3. 3.
    Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science. 2005;309(5740):1519–24.CrossRefPubMedGoogle Scholar
  4. 4.
    Ambros V. MicroRNA pathways in flies and worms. Cell. 2003;113(6):673–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6(4):259–69.CrossRefPubMedGoogle Scholar
  6. 6.
    Duan R, Pak C, Jin P. Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet. 2007;16(9):1124–31.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang Z, Zhang B, Li W, Fu L, Zhu Z, Dong JT. Epigenetic silencing of miR-203 upregulates SNAI2 and contributes to the invasiveness of malignant breast cancer cells. Genes Cancer. 2011;2(8):782–91.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ryan BM, Robles AI, Harris CC. Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer. 2010;10(6):389–402.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lin J, Huang S, Wu S, Ding J, Zhao Y, Liang L, et al. MicroRNA-423 promotes cell growth and regulates G(1)/S transition by targeting p21Cip1/Waf1 in hepatocellular carcinoma. Carcinogenesis. 2011;32(11):1641–7.CrossRefPubMedGoogle Scholar
  10. 10.
    Arriola E, Marchio C, Tan DS, Drury SC, Lambros MB, Natrajan R, et al. Genomic analysis of the HER2/TOP2A amplicon in breast cancer and breast cancer cell lines. Laboratory investigation. J Tech Methods Pathol. 2008;88(5):491–503.CrossRefGoogle Scholar
  11. 11.
    Kontorovich T, Levy A, Korostishevsky M, Nir U, Friedman E. Single nucleotide polymorphisms in miRNA binding sites and miRNA genes as breast/ovarian cancer risk modifiers in Jewish high-risk women. Int J Cancer. 2010;127(3):589–97.CrossRefPubMedGoogle Scholar
  12. 12.
    Hu Y, Yu CY, Wang JL, Guan J, Chen HY, Fang JY. MicroRNA sequence polymorphisms and the risk of different types of cancer. Sci Rep. 2014;4:3648.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Smith RA, Jedlinski DJ, Gabrovska PN, Weinstein SR, Haupt L, Griffiths LR. A genetic variant located in miR-423 is associated with reduced breast cancer risk. Cancer Genomics Proteomics. 2012;9(3):115–8.PubMedGoogle Scholar
  14. 14.
    Ye Y, Wang KK, Gu J, Yang H, Lin J, Ajani JA, et al. Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res. 2008;1(6):460–9.CrossRefGoogle Scholar
  15. 15.
    Lin J, Horikawa Y, Tamboli P, Clague J, Wood CG, Wu X. Genetic variations in microRNA-related genes are associated with survival and recurrence in patients with renal cell carcinoma. Carcinogenesis. 2010;31(10):1805–12.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bao BY, Pao JB, Huang CN, Pu YS, Chang TY, Lan YH, et al. Polymorphisms inside microRNAs and microRNA target sites predict clinical outcomes in prostate cancer patients receiving androgen-deprivation therapy. Clin Cancer Res Off J Am Assoc Cancer Res. 2011;17(4):928–36.CrossRefGoogle Scholar
  17. 17.
    Chen QH, Wang QB, Zhang B. Ethnicity modifies the association between functional microRNA polymorphisms and breast cancer risk: a HuGE meta-analysis. Tumour Biol J Int Soc Oncodev Biol Med. 2014;35(1):529–43.CrossRefGoogle Scholar
  18. 18.
    Farazi TA, Horlings HM, Ten Hoeve JJ, Mihailovic A, Halfwerk H, Morozov P, et al. MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res. 2011;71(13):4443–53.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Boren T, Xiong Y, Hakam A, Wenham R, Apte S, Wei Z, et al. MicroRNAs and their target messenger RNAs associated with endometrial carcinogenesis. Gynecol Oncol. 2008;110(2):206–15.CrossRefPubMedGoogle Scholar
  20. 20.
    Hui AB, Lenarduzzi M, Krushel T, Waldron L, Pintilie M, Shi W, et al. Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res Off J Am Assoc Cancer Res. 2010;16(4):1129–39.CrossRefGoogle Scholar
  21. 21.
    Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A. Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci U S A. 2008;105(20):7269–74.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Qi L, Hu Y, Zhan Y, Wang J, Wang BB, Xia HF, et al. A SNP site in pri-miR-124 changes mature miR-124 expression but no contribution to Alzheimer's disease in a Mongolian population. Neurosci Lett. 2012;515(1):1–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Harnprasopwat R, Ha D, Toyoshima T, Lodish H, Tojo A, Kotani A. Alteration of processing induced by a single nucleotide polymorphism in pri-miR-126. Biochem Biophys Res Commun. 2010;399(2):117–22.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kotani A, Ha D, Schotte D, den Boer ML, Armstrong SA, Lodish HF. A novel mutation in the miR-128b gene reduces miRNA. Cell Cycle. 2010;9(6):1037–42.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Guan G, Zhang D, Zheng Y, Wen L, Yu D, Lu Y, et al. microRNA-423-3p promotes tumor progression via modulation of AdipoR2 in laryngeal carcinoma. Int J Clin Exp Pathol. 2014;7(9):5683–91.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Liu J, Wang X, Yang X, Liu Y, Shi Y, Ren J, et al. miRNA423-5p regulates cell proliferation and invasion by targeting trefoil factor 1 in gastric cancer cells. Cancer Lett. 2014;347(1):98–104.CrossRefPubMedGoogle Scholar
  27. 27.
    Sun X, Frierson HF, Chen C, Li C, Ran Q, Otto KB, et al. Frequent somatic mutations of the transcription factor ATBF1 in human prostate cancer. Nat Genet. 2005;37(4):407–12. doi: 10.1038/ng1528.CrossRefPubMedGoogle Scholar
  28. 28.
    P Z. Polymorphisms of microRNA and ESR1 genes and their association with triple negative breast cancer risk and prognosis. Thesis. 2011.Google Scholar
  29. 29.
    Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell. 2006;125(5):887–901.CrossRefPubMedGoogle Scholar
  30. 30.
    Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R, et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol. 2006;13(1):13–21.CrossRefPubMedGoogle Scholar
  31. 31.
    Calin GAFM, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. New Engl J Med. 2005;353:1793–801.CrossRefPubMedGoogle Scholar
  32. 32.
    Stark MS, Tyagi S, Nancarrow DJ, Boyle GM, Cook AL, Whiteman DC, et al. Characterization of the melanoma miRNAome by deep sequencing. PLoS One. 2010;5(3):e9685.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Huanhuan Zhao
    • 1
    • 4
  • Ang Gao
    • 1
  • Zhiqian Zhang
    • 1
  • Ruoyu Tian
    • 1
  • Ang Luo
    • 1
  • Mei Li
    • 1
  • Dan Zhao
    • 1
  • Liya Fu
    • 1
  • Li Fu
    • 2
  • Jin-Tang Dong
    • 1
    • 3
  • Zhengmao Zhu
    • 1
  1. 1.State Key Laboratory of Medicinal Chemical Biology, Department of Genetics and Cell BiologyCollege of Life Sciences, Nankai UniversityTianjinChina
  2. 2.Key Laboratory of Breast Cancer Research, Department of Breast Cancer Pathology and Research LaboratoryCancer Hospital of Tianjin Medical UniversityTianjinChina
  3. 3.Department of Hematology and Medical Oncology, Emory Winship Cancer InstituteEmory University School of MedicineAtlantaUSA
  4. 4.Department of Physiology and Pathophysiology, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina

Personalised recommendations