Advertisement

Tumor Biology

, Volume 36, Issue 6, pp 4741–4745 | Cite as

Interplay of miR-21 and FoxO1 modulates growth of pancreatic ductal adenocarcinoma

  • Weifeng Song
  • Lei Wang
  • Liwei Wang
  • Qi Li
Research Article

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant primary tumors in humans, with extremely high lethality. Although great efforts have been made to understand the molecular regulation of the tumorigenesis of PDAC, our current knowledge remains very limited. Previous work has shown a possible involvement of miR-21 in the growth of PDAC, whereas the underlying mechanism has not been clarified. Here, we show significant higher levels of miR-21 in PDAC, compared to the adjacent normal pancreatic tissue. Moreover, overexpression of miR-21 in PDAC cells increased cell growth, whereas inhibition of miR-21 decreased cell growth. Furthermore, miR-21 was found to inhibit nuclear retention of FoxO1 to augment the growth of PDAC cells. Thus, miR-21/FoxO1 axis appears to be a novel therapeutic target for inhibiting the growth of PDAC.

Keywords

Pancreatic ductal adenocarcinoma FoxO1 miR-21 

Notes

Conflict of interest

The authors declared that no competing interests exist.

References

  1. 1.
    Han H, Von Hoff DD. Snapshot: pancreatic cancer. Cancer Cell. 2013;23:424–24. e421.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sicard F, Gayral M, Lulka H, Buscail L, Cordelier P. Targeting miR-21 for the therapy of pancreatic cancer. Mol Ther. 2013;21:986–94.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tavano F, di Mola FF, Piepoli A, Panza A, Copetti M, Burbaci FP, et al. Changes in miR-143 and miR-21 expression and clinicopathological correlations in pancreatic cancers. Pancreas. 2012;41:1280–4.CrossRefPubMedGoogle Scholar
  4. 4.
    Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM, et al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res. 2010;70:3606–17.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gross DN, van den Heuvel AP, Birnbaum MJ. The role of FoxO in the regulation of metabolism. Oncogene. 2008;27:2320–36.CrossRefPubMedGoogle Scholar
  6. 6.
    Lieber M, Mazzetta J, Nelson-Rees W, Kaplan M, Todaro G. Establishment of a continuous tumor-cell line (PANC-1) from a human carcinoma of the exocrine pancreas. Int J Cancer. 1975;15:741–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Biggs 3rd WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A. 1999;96:7421–6.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Xiao X, Gaffar I, Guo P, Wiersch J, Fischbach S, Peirish L, et al. M2 macrophages promote beta-cell proliferation by up-regulation of SMAD7. Proc Natl Acad Sci U S A. 2014;111:E1211–20.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chen J, Huang Q, Wang F. Inhibition of FoxO1 nuclear exclusion prevents metastasis of glioblastoma. Tumour Biol. 2014;35:7195–200.CrossRefPubMedGoogle Scholar
  10. 10.
    Ding H, Zhu Y, Chu T, Wang S. Epidermal growth factor induces FoxO1 nuclear exclusion to activate MMP7-mediated metastasis of larynx carcinoma. Tumour Biol. 2014.Google Scholar
  11. 11.
    Pei J, Lou Y, Zhong R, Han B. MMP9 activation triggered by epidermal growth factor induced FoxO1 nuclear exclusion in non-small cell lung cancer. Tumour Biol. 2014;35:6673–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhao Y, Xu Y, Luo F, Xu W, Wang B, Pang Y, et al. Angiogenesis, mediated by miR-21, is involved arsenite-induced carcinogenesis. Toxicol Lett. 2013;223:35–41.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhao D, Tu Y, Wan L, Bu L, Huang T, Sun X, et al. In vivo monitoring of angiogenesis inhibition via down-regulation of miR-21 in a VEGFR2-luc murine breast cancer model using bioluminescent imaging. PLoS One. 2013;8:e71472.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zaravinos A, Radojicic J, Lambrou GI, Volanis D, Delakas D, Stathopoulos EN, et al. Expression of miRNAs involved in angiogenesis, tumor cell proliferation, tumor suppressor inhibition, epithelial-mesenchymal transition and activation of metastasis in bladder cancer. J Urol. 2012;188:615–23.CrossRefPubMedGoogle Scholar
  15. 15.
    Liu LZ, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y, et al. Mir-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS One. 2011;6:e19139.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Xiao X, Prasadan K, Guo P, El-Gohary Y, Fischbach S, Wiersch J, et al. Pancreatic duct cells as a source of VEGF in mice. Diabetologia. 2014;57:991–1000.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Movahedi B, Gysemans C, Jacobs-Tulleneers-Thevissen D, Mathieu C, Pipeleers D. Pancreatic duct cells in human islet cell preparations are a source of angiogenic cytokines interleukin-8 and vascular endothelial growth factor. Diabetes. 2008;57:2128–36.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schulz P, Fischer C, Detjen KM, Rieke S, Hilfenhaus G, von Marschall Z, et al. Angiopoietin-2 drives lymphatic metastasis of pancreatic cancer. FASEB J. 2011;25:3325–35.CrossRefPubMedGoogle Scholar
  19. 19.
    Bausch D, Pausch T, Krauss T, Hopt UT, Fernandez-del-Castillo C, Warshaw AL, et al. Neutrophil granulocyte derived MMP-9 is a VEGF independent functional component of the angiogenic switch in pancreatic ductal adenocarcinoma. Angiogenesis. 2011;14:235–43.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Medical Oncology, Shanghai First People’s HospitalShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai Key Laboratory of Pancreatic Diseases ResearchShanghaiChina

Personalised recommendations