Tumor Biology

, Volume 36, Issue 6, pp 4689–4697 | Cite as

Significantly inhibitory effects of low molecular weight heparin (Fraxiparine) on the motility of lung cancer cells and its related mechanism

  • Guo-xing Zhong
  • Yi Gong
  • Chuan-jiang Yu
  • Shi-fei Wu
  • Qing-ping Ma
  • Yu Wang
  • Jiang Ren
  • Xue-chao Zhang
  • Wei-han Yang
  • Wen Zhu
Research Article


Low molecular weight heparin (LMWH) improving the cancer survival has been attracting attention for many years. Our previous study found that LMWH (Fraxiparine) strongly downregulated the invasive, migratory, and adhesive ability of human lung adenocarcinoma A549 cells. Here, we aimed to further identify the antitumor effects and possible mechanisms of Fraxiparine on A549 cells and human highly metastatic lung cancer 95D cells. The ability of cell invasion, migration, and adhesion were measured by Transwell, Millicell, and MTT assays. FITC-labeled phalloidin was used to detect F-actin bundles in cells. Chemotactic migration was analyzed in a modified Transwell assay. Measurement of protein expression and phosphorylation activity of PI3K, Akt, and mTOR was performed with Western blot. Our studies found that Fraxiparine significantly inhibited the invasive, migratory, and adhesive characteristics of A549 and 95D cells after 24 h incubation and showed a dose-dependent manner. Fraxiparine influenced the actin cytoskeleton rearrangement of A549 and 95D cells by preventing F-actin polymerization. Moreover, Fraxiparine could significantly inhibit CXCL12-mediated chemotactic migration of A549 and 95D cells in a concentration-dependent manner. Furthermore, Fraxiparine might destroy the interaction between CXCL12-CXCR4 axis, then suppress the PI3K-Akt-mTOR signaling pathway in lung cancer cells. For the first time, our data indicated that Fraxiparine could significantly inhibit the motility of lung cancer cells by restraining the actin cytoskeleton reorganization, and its related mechanism might be through inhibiting PI3K-Akt-mTOR signaling pathway mediated by CXCL12-CXCR4 axis. Therefore, Fraxiparine would be a potential drug for lung cancer metastasis therapy.


Fraxiparine Lung cancer Actin cytoskeleton Motility PI3K-Akt-mTOR CXCL12-CXCR4 axis 



This project is partly supported by the grant from the Chinese National Science and Technology Major Projects of New Drugs (2009ZX09301-004).

Conflict of interest



  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA: Cancer J Clin. 2012;62(1):10–29.Google Scholar
  2. 2.
    Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer. 2006;6(6):449–58.CrossRefPubMedGoogle Scholar
  3. 3.
    Horlocker TT, Heit JA. Low molecular weight heparin: biochemistry, pharmacology, perioperative prophylaxis regimens, and guidelines for regional anesthetic management. Anesth Analg. 1997;85(4):874–85.CrossRefPubMedGoogle Scholar
  4. 4.
    Lyman GH, Khorana AA, Falanga A, Clarke-Pearson D, Flowers C, Jahanzeb M, et al. American Society of Clinical Oncology guideline: recommendations for venous thromboembolism prophylaxis and treatment in patients with cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2007;25(34):5490–505.CrossRefGoogle Scholar
  5. 5.
    Altinbas M, Coskun HS, Er O, Ozkan M, Eser B, Unal A, et al. A randomized clinical trial of combination chemotherapy with and without low-molecular-weight heparin in small cell lung cancer. J Thromb Haemost: JTH. 2004;2(8):1266–71.CrossRefPubMedGoogle Scholar
  6. 6.
    Lee AY, Rickles FR, Julian JA, Gent M, Baker RI, Bowden C, et al. Randomized comparison of low molecular weight heparin and coumarin derivatives on the survival of patients with cancer and venous thromboembolism. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(10):2123–9.CrossRefGoogle Scholar
  7. 7.
    Lazo-Langner A, Goss GD, Spaans JN, Rodger MA. The effect of low-molecular-weight heparin on cancer survival. A systematic review and meta-analysis of randomized trials. J Thromb Haemost: JTH. 2007;5(4):729–37.CrossRefPubMedGoogle Scholar
  8. 8.
    von Delius S, Ayvaz M, Wagenpfeil S, Eckel F, Schmid RM, Lersch C. Effect of low-molecular-weight heparin on survival in patients with advanced pancreatic adenocarcinoma. Thromb Haemost. 2007;98(2):434–9.Google Scholar
  9. 9.
    Yilmaz M, Christofori G. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28(1–2):15–33.CrossRefPubMedGoogle Scholar
  10. 10.
    Chalkiadaki G, Nikitovic D, Katonis P, Berdiaki A, Tsatsakis A, Kotsikogianni I, et al. Low molecular weight heparin inhibits melanoma cell adhesion and migration through a PKCa/JNK signaling pathway inducing actin cytoskeleton changes. Cancer Lett. 2011;312(2):235–44.CrossRefPubMedGoogle Scholar
  11. 11.
    Mellor P, Harvey JR, Murphy KJ, Pye D, O'Boyle G, Lennard TW, et al. Modulatory effects of heparin and short-length oligosaccharides of heparin on the metastasis and growth of LMD MDA-MB 231 breast cancer cells in vivo. Br J Cancer. 2007;97(6):761–8.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Harvey JR, Mellor P, Eldaly H, Lennard TW, Kirby JA, Ali S. Inhibition of CXCR4-mediated breast cancer metastasis: a potential role for heparinoids? Clin Cancer Res: Off J Am Assoc Cancer Res. 2007;13(5):1562–70.CrossRefGoogle Scholar
  13. 13.
    Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM, et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood. 2007;109(7):2708–17.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Niedermeier M, Hennessy BT, Knight ZA, Henneberg M, Hu J, Kurtova AV, et al. Isoform-selective phosphoinositide 3′-kinase inhibitors inhibit CXCR4 signaling and overcome stromal cell-mediated drug resistance in chronic lymphocytic leukemia: a novel therapeutic approach. Blood. 2009;113(22):5549–57.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lee YC, Lin HH, Hsu CH, Wang CJ, Chiang TA, Chen JH. Inhibitory effects of andrographolide on migration and invasion in human non-small cell lung cancer A549 cells via down-regulation of PI3K/Akt signaling pathway. Eur J Pharmacol. 2010;632(1–3):23–32.CrossRefPubMedGoogle Scholar
  16. 16.
    Yu CJ, Ye SJ, Feng ZH, Ou WJ, Zhou XK, Li LD, et al. Effect of Fraxiparine, a type of low molecular weight heparin, on the invasion and metastasis of lung adenocarcinoma A549 cells. Oncol Lett. 2010;1(4):755–60.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Burger JA, Burger M, Kipps TJ. Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood. 1999;94(11):3658–67.PubMedGoogle Scholar
  18. 18.
    Kwiatkowska A, Kijewska M, Lipko M, Hibner U, Kaminska B. Downregulation of Akt and FAK phosphorylation reduces invasion of glioblastoma cells by impairment of MT1-MMP shuttling to lamellipodia and downregulates MMPs expression. Biochim Biophys Acta. 2011;1813(5):655–67.CrossRefPubMedGoogle Scholar
  19. 19.
    Lee H, Kim JS, Kim E. Fucoidan from seaweed Fucus vesiculosus inhibits migration and invasion of human lung cancer cell via PI3K-Akt-mTOR pathways. PLoS One. 2012;7(11):e50624.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Li H, Zhang B, Liu Y, Yin C. EBP50 inhibits the migration and invasion of human breast cancer cells via LIMK/cofilin and the PI3K/Akt/mTOR/MMP signaling pathway. Med Oncol. 2014;31(9):162.CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang L, Wang H, Zhu J, Ding K, Xu J. FTY720 reduces migration and invasion of human glioblastoma cell lines via inhibiting the PI3K/AKT/mTOR/p70S6K signaling pathway. Tumour Biol: J Int Soc Oncodevelopmental Biol Med. 2014;35(11):10707–14.CrossRefGoogle Scholar
  22. 22.
    Xing X, Zhang L, Wen X, Wang X, Cheng X, Du H, et al. PP242 suppresses cell proliferation, metastasis, and angiogenesis of gastric cancer through inhibition of the PI3K/AKT/mTOR pathway. Anti-Cancer Drugs. 2014;25(10):1129–40.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tang CH, Tan TW, Fu WM, Yang RS. Involvement of matrix metalloproteinase-9 in stromal cell-derived factor-1/CXCR4 pathway of lung cancer metastasis. Carcinogenesis. 2008;29(1):35–43. doi: 10.1093/carcin/bgm220.CrossRefPubMedGoogle Scholar
  24. 24.
    Su L, Zhang J, Xu H, Wang Y, Chu Y, Liu R, et al. Differential expression of CXCR4 is associated with the metastatic potential of human non-small cell lung cancer cells. Clin Cancer Res: Off J Am Assoc Cancer Res. 2005;11(23):8273–80.CrossRefGoogle Scholar
  25. 25.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA: Cancer J Clin. 2009;59(4):225–49.Google Scholar
  26. 26.
    Temel JS, Greer JA, Muzikansky A, Gallagher ER, Admane S, Jackson VA, et al. Early palliative care for patients with metastatic non-small-cell lung cancer. N Engl J Med. 2010;363(8):733–42.CrossRefPubMedGoogle Scholar
  27. 27.
    Vicent S, Luis-Ravelo D, Anton I, Garcia-Tunon I, Borras-Cuesta F, Dotor J, et al. A novel lung cancer signature mediates metastatic bone colonization by a dual mechanism. Cancer Res. 2008;68(7):2275–85.CrossRefPubMedGoogle Scholar
  28. 28.
    Icli F, Akbulut H, Utkan G, Yalcin B, Dincol D, Isikdogan A, et al. Low molecular weight heparin (LMWH) increases the efficacy of cisplatinum plus gemcitabine combination in advanced pancreatic cancer. J Surg Oncol. 2007;95(6):507–12.CrossRefPubMedGoogle Scholar
  29. 29.
    Klerk CP, Smorenburg SM, Otten HM, Lensing AW, Prins MH, Piovella F, et al. The effect of low molecular weight heparin on survival in patients with advanced malignancy. J Clin Oncol Off J Am Soc Clin Oncol. 2005;23(10):2130–5.CrossRefGoogle Scholar
  30. 30.
    Nagy Z, Turcsik V, Blasko G. The effect of LMWH (nadroparin) on tumor progression. Pathol Oncol Res : POR. 2009;15(4):689–92.CrossRefPubMedGoogle Scholar
  31. 31.
    Lebeau B, Chastang C, Brechot JM, Capron F, Dautzenberg B, Delaisements C, et al. Subcutaneous heparin treatment increases survival in small cell lung cancer. “Petites Cellules” Group. Cancer. 1994;74(1):38–45.CrossRefPubMedGoogle Scholar
  32. 32.
    Griffiths GO, Burns S, Noble SI, Macbeth FR, Cohen D, Maughan TS. FRAGMATIC: a randomised phase III clinical trial investigating the effect of fragmin added to standard therapy in patients with lung cancer. BMC Cancer. 2009;9:355.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Meyer G, Besse B, Friard S, Girard P, Corbi P, Azarian R, et al. Effect of tinzaparin on survival in non-small-cell lung cancer after surgery. TILT: tinzaparin in lung tumours. Rev Mal Respir. 2011;28(5):654–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Bereczky B, Gilly R, Raso E, Vago A, Timar J, Tovari J. Selective antimetastatic effect of heparins in preclinical human melanoma models is based on inhibition of migration and microvascular arrest. Clin Exp Metastasis. 2005;22(1):69–76.CrossRefPubMedGoogle Scholar
  35. 35.
    Hasan J, Shnyder SD, Clamp AR, McGown AT, Bicknell R, Presta M, et al. Heparin octasaccharides inhibit angiogenesis in vivo. Clin Cancer Res: Off J Am Assoc Cancer Res. 2005;11(22):8172–9.CrossRefGoogle Scholar
  36. 36.
    Chen X, Xiao W, Qu X, Zhou S. The effect of dalteparin, a kind of low molecular weight heparin, on lung adenocarcinoma A549 cell line in vitro. Cancer Investig. 2008;26(7):718–24.CrossRefGoogle Scholar
  37. 37.
    Abu Arab W, Kotb R, Sirois M, Rousseau E. Concentration- and time-dependent effects of enoxaparin on human adenocarcinomic epithelial cell line A549 proliferation in vitro. Can J Physiol Pharmacol. 2011;89(10):705–11.CrossRefPubMedGoogle Scholar
  38. 38.
    Carmazzi Y, Iorio M, Armani C, Cianchetti S, Raggi F, Neri T, et al. The mechanisms of nadroparin-mediated inhibition of proliferation of two human lung cancer cell lines. Cell Prolif. 2012;45(6):545–56.CrossRefPubMedGoogle Scholar
  39. 39.
    Park JW, Jeon OC, Kim SK, Al-Hilal TA, Jin SJ, Moon HT, et al. High antiangiogenic and low anticoagulant efficacy of orally active low molecular weight heparin derivatives. J Controlled Release : Off J Controlled Release Soc. 2010;148(3):317–26.CrossRefGoogle Scholar
  40. 40.
    Yu L, Garg HG, Li B, Linhardt RJ, Hales CA. Antitumor effect of butanoylated heparin with low anticoagulant activity on lung cancer growth in mice and rats. Curr Cancer Drug Targets. 2010;10(2):229–41.CrossRefPubMedGoogle Scholar
  41. 41.
    Bonello T, Coombes J, Schevzov G, Gunning P, Stehn J. Therapeutic targeting of the actin cytoskeleton in cancer. Cytoskeleton and Human Disease. Springer; 2012. p. 181-200.Google Scholar
  42. 42.
    Giganti A, Friederich E. The actin cytoskeleton as a therapeutic target: state of the art and future directions. Prog Cell Cycle Res. 2003;5:511–25.PubMedGoogle Scholar
  43. 43.
    Rao J, Li N. Microfilament actin remodeling as a potential target for cancer drug development. Curr Cancer Drug Targets. 2004;4(4):345–54.CrossRefPubMedGoogle Scholar
  44. 44.
    Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2010;16(11):2927–31.CrossRefGoogle Scholar
  45. 45.
    Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Rubie C, Frick VO, Ghadjar P, Wagner M, Justinger C, Faust SK, et al. CXC receptor-4 mRNA silencing abrogates CXCL12-induced migration of colorectal cancer cells. J Transl Med. 2011;9:22.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Gangadhar T, Nandi S, Salgia R. The role of chemokine receptor CXCR4 in lung cancer. Cancer Biol Therapy. 2010;9(6):409–16.CrossRefGoogle Scholar
  48. 48.
    Sutton A, Friand V, Brule-Donneger S, Chaigneau T, Ziol M, Sainte-Catherine O, et al. Stromal cell-derived factor-1/chemokine (C-X-C motif) ligand 12 stimulates human hepatoma cell growth, migration, and invasion. Mol Cancer Res : MCR. 2007;5(1):21–33.CrossRefPubMedGoogle Scholar
  49. 49.
    Ma L, Qiao H, He C, Yang Q, Cheung CH, Kanwar JR, et al. Modulating the interaction of CXCR4 and CXCL12 by low-molecular-weight heparin inhibits hepatic metastasis of colon cancer. Investig New Drugs. 2012;30(2):508–17.CrossRefGoogle Scholar
  50. 50.
    David O, Jett J, LeBeau H, Dy G, Hughes J, Friedman M, et al. Phospho-Akt overexpression in non-small cell lung cancer confers significant stage-independent survival disadvantage. Clin Cancer Res : Off J Am Assoc Cancer Res. 2004;10(20):6865–71.CrossRefGoogle Scholar
  51. 51.
    Solomon B, Pearson RB. Class IA phosphatidylinositol 3-kinase signaling in non-small cell lung cancer. J Thorac Oncol: Off Publ Int Assoc Study of Lung Cancer. 2009;4(7):787–91.CrossRefGoogle Scholar
  52. 52.
    Wojtalla A, Arcaro A. Targeting phosphoinositide 3-kinase signalling in lung cancer. Crit Rev Oncol/Hematol. 2011;80(2):278–90.CrossRefGoogle Scholar
  53. 53.
    Sadir R, Baleux F, Grosdidier A, Imberty A, Lortat-Jacob H. Characterization of the stromal cell-derived factor-1alpha-heparin complex. J Biol Chem. 2001;276(11):8288–96.CrossRefPubMedGoogle Scholar
  54. 54.
    Altundag K, Altundag O, Atik MA. Heparin and CXCL12 dimerization. J Clin Oncol : Off J Am Soc Clin Oncol. 2005;23(28):7248.CrossRefGoogle Scholar
  55. 55.
    Simka M. Anti-metastatic activity of heparin is probably associated with modulation of SDF-1-CXCR4 axis. Med Hypotheses. 2007;69(3):709.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Guo-xing Zhong
    • 1
    • 2
  • Yi Gong
    • 1
  • Chuan-jiang Yu
    • 1
  • Shi-fei Wu
    • 1
  • Qing-ping Ma
    • 1
  • Yu Wang
    • 1
  • Jiang Ren
    • 1
  • Xue-chao Zhang
    • 1
  • Wei-han Yang
    • 1
  • Wen Zhu
    • 1
  1. 1.State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
  2. 2.Central LaboratoryShenzhen Baoan Maternal and Child Health HospitalShenzhenChina

Personalised recommendations