Tumor Biology

, Volume 36, Issue 6, pp 4681–4688 | Cite as

Oxidative stress associates with aggressiveness in lung large-cell carcinoma

  • Leonardo Lisboa da Motta
  • Marco Antonio De Bastiani
  • Fernanda Stapenhorst
  • Fábio Klamt
Research Article


Oxidative stress is involved in many cancer-related processes; however, current therapeutics are unable to benefit from this approach. The lungs have a very exquisite redox environment that may contribute to the frequent and deadly nature of lung cancer. Very few studies specifically address lung large-cell carcinoma (LCC), even though this is one of the major subtypes. Using bioinformatic (in silico) tools, we demonstrated that a more aggressive lung LCC cell line (HOP-92) has an overall increase activity of the human antioxidant gene (HAG) network (P = 0.0046) when compared to the less aggressive cell line H-460. Gene set enrichment analysis (GSEA) showed that the expression of metallothioneins (MT), glutathione peroxidase 1 (GPx-1), and catalase (CAT) are responsible for this difference in gene signature. This was validated in vitro, where HOP-92 showed a pro-oxidative imbalance, presenting higher antioxidant enzymes (superoxide dismutase (SOD), CAT, and GPx) activities, lower reduced sulfhydryl groups and antioxidant potential, and higher lipoperoxidation and reactive species production. Also, HAG network is upregulated in lung LCC patients with worst outcome. Finally, the prognostic value of genes enriched in the most aggressive cell line was assessed in this cohort. Isoforms of metallothioneins are associated with bad prognosis, while the thioredoxin-interacting protein (TXNIP) is associated with good prognosis. Thus, redox metabolism can be an important aspect in lung LCC aggressiveness and a possible therapeutic target.


Tumor progression Catalase Lung cancer Hydrogen peroxide H661 



We thank Dr. Karin Purshouse for revising the manuscript and the Brazilians funds—PPSUS FAPERGS/MS/CNPq/SESRS/PPSUS (1121-2551/13-8), MCT/CNPq Universal (470306/2011-4), PRONEX/FAPERGS (1000274), PRONEM/FAPERGS (11/2032-5), PqG/FAPERGS (2414-2551/12-8), and MCT/CNPq INCT-TM (573671/2008-7)—for financial support.

Conflicts of interest


Supplementary material

13277_2015_3116_Fig4_ESM.gif (50 kb)
Figure S1

Landscape analysis comparing the expression of Human Antioxidant Gene (HAG) network in human lung large cell carcinoma (LCC) cell lines H-460 and H661, using two datasets, GSE4824 (a) and GSE14925 (b), generated with ViaComplex® V1.0. Color gradient (Z-axis) represents the relative functional state mapped onto graph according to the data input from the lung LCC H-460-a vs. H-661-b, where z=a/(a+b). P value refers to Bootstrap analysis comparing cell lines. (GIF 49 kb)

13277_2015_3116_MOESM1_ESM.tif (407 kb)
High resolution image (TIFF 406 kb)
13277_2015_3116_Fig5_ESM.gif (77 kb)
Figure S2

Redox state influences growth of lung large cell carcinoma cell lines. Treatment with exogenous catalase (125–1000 U/mL) for 72 h cause dose-dependent inhibition in cell proliferation of lung LCC cell lines (a). CAT washout after 48 h of incubation allowed cells to return to its original proliferation rate (b). Dose response curve against H2O2 in lung LCC cell lines. Sub-lethal doses (<40 μM) of H2O2 stimulate cell growth of HOP-92 (c). Data is mean ± S.E.M. of at least three independent experiments (n = 3), performed in triplicate. * P < 0.05 (Student’s t-test compared to untreated group). (GIF 76 kb)

13277_2015_3116_MOESM2_ESM.tif (255 kb)
High resolution image (TIFF 255 kb)


  1. 1.
    Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12:931–47.CrossRefPubMedGoogle Scholar
  2. 2.
    Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P, Bergo MO. Antioxidants accelerate lung cancer progression in mice. Sci Transl Med. 2014;6:221ra15.CrossRefPubMedGoogle Scholar
  3. 3.
    Lisbôa da Motta L, Müller CB, De Bastiani MA, Behr GA, França FS, da Rocha RF, et al. Imbalance in redox status is associated with tumor aggressiveness and poor outcome in lung adenocarcinoma patients. J Cancer Res Clin Oncol. 2014;140:461–70.CrossRefPubMedGoogle Scholar
  4. 4.
    Filaire E, Dupuis C, Galvaing G, Aubreton S, Laurent H, Richard R, et al. Lung cancer: what are the links with oxidative stress, physical activity and nutrition. Lung Cancer. 2013;82:383–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Marikovsky M, Nevo N, Vadai E, Harris-Cerruti C. Cu/Zn superoxide dismutase plays a role in angiogenesis. Int J Cancer. 2002;97:34–41.CrossRefPubMedGoogle Scholar
  6. 6.
    Connor KM, Hempel N, Nelson KK, Dabiri G, Gamarra A, Belarmino J, et al. Manganese superoxide dismutase enhances the invasive and migratory activity of tumor cells. Cancer Res. 2007;67:10260–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Pani G, Galeotti T, Chiarugi P. Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev. 2010;29:351–78.CrossRefPubMedGoogle Scholar
  8. 8.
    Sotgia F, Martinez-Outschoorn UE, Lisanti MP. Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention? BMC Med. 2011;9:62.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Greenberg AK, Tsay J-C, Tchou-Wong K-M, Jorgensen A, Rom WN. Chemoprevention of lung cancer: prospects and disappointments in human clinical trials. Cancers (Basel). Multidisciplinary Digital Publishing Institute. 2013;5:131–48.Google Scholar
  10. 10.
    Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health. 2013;10:3886–907.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rahman I, Biswas SK, Kode A. Oxidant and antioxidant balance in the airways and airway diseases. Eur J Pharmacol. 2006;533:222–39.CrossRefPubMedGoogle Scholar
  12. 12.
    Ilonen IK, Räsänen JV, Sihvo EI, Knuuttila A, Salmenkivi KM, Ahotupa MO, et al. Oxidative stress in non-small cell lung cancer: role of nicotinamide adenine dinucleotide phosphate oxidase and glutathione. Acta Oncol. 2009;48:1054–61.CrossRefPubMedGoogle Scholar
  13. 13.
    Esme H, Cemek M, Sezer M, Saglam H, Demir A, Melek H, et al. High levels of oxidative stress in patients with advanced lung cancer. Respirology. 2008;13:112–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Ho JC, Chan-Yeung M, Ho SP, Mak JC, Ip MS, Ooi GC, et al. Disturbance of systemic antioxidant profile in nonsmall cell lung carcinoma. Eur Respir J. 2007;29:273–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Kaynar H, Meral M, Turhan H, Keles M, Celik G, Akcay F. Glutathione peroxidase, glutathione-S-transferase, catalase, xanthine oxidase, Cu-Zn superoxide dismutase activities, total glutathione, nitric oxide, and malondialdehyde levels in erythrocytes of patients with small cell and non-small cell lung cancer. Cancer Lett. 2005;227:133–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Melloni B, Lefebvre MA, Bonnaud F, Vergnenègre A, Grossin L, Rigaud M, et al. Antioxidant activity in bronchoalveolar lavage fluid from patients with lung cancer. Am J Respir Crit Care Med. 1996;154:1706–11.CrossRefPubMedGoogle Scholar
  17. 17.
    Chan HP, Tran V, Lewis C, Thomas PS. Elevated levels of oxidative stress markers in exhaled breath condensate. J Thorac Oncol. 2009;4(2):172–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Jaruga P, Zastawny TH, Skokowski J, Dizdaroglu M, Olinski R. Oxidative DNA base damage and antioxidant enzyme activities in human lung cancer. FEBS Lett. 1994;341:59–64.CrossRefPubMedGoogle Scholar
  19. 19.
    Coursin DB, Cihla HP, Sempf J, Oberley TD, Oberley LW. An immunohistochemical analysis of antioxidant and glutathione S-transferase enzyme levels in normal and neoplastic human lung. Histol Histopathol. 1996;11:851–60.PubMedGoogle Scholar
  20. 20.
    Blair SL, Heerdt P, Sachar S, Abolhoda A, Hochwald S, Cheng H, et al. Glutathione metabolism in patients with non-small cell lung cancers. Cancer Res. 1997;57:152–5.PubMedGoogle Scholar
  21. 21.
    Brennan P, Fortes C, Butler J, Agudo A, Benhamou S, Darby S, et al. A multicenter case-control study of diet and lung cancer among non-smokers. Cancer Causes Control. 2000;11:49–58.CrossRefPubMedGoogle Scholar
  22. 22.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.CrossRefPubMedGoogle Scholar
  23. 23.
    Kerr KM. Classification of lung cancer: proposals for change? Arch Pathol Lab Med. 2012;136:1190–3.CrossRefPubMedGoogle Scholar
  24. 24.
    Pardo J, Martinez-Peñuela AM, Sola JJ, Panizo A, Gúrpide A, Martinez-Peñuela JM, et al. Large cell carcinoma of the lung: an endangered species? Appl Immunohistochem Mol Morphol. 2009;17:383–92.CrossRefPubMedGoogle Scholar
  25. 25.
    Rossi G, Mengoli MC, Cavazza A, Nicoli D, Barbareschi M, Cantaloni C, et al. Large cell carcinoma of the lung: clinically oriented classification integrating immunohistochemistry and molecular biology. Virchows Arch. 2014;464(1):61–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Travis WD, Brambilla E, Riely GJ. New pathologic classification of lung cancer: relevance for clinical practice and clinical trials. J Clin Oncol. 2013;31:992–1001.CrossRefPubMedGoogle Scholar
  27. 27.
    Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 2006;1:1112–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Gelain DP, Dalmolin RJS, Belau VL, Moreira JCF, Klamt F, Castro MAA. A systematic review of human antioxidant genes. Front Biosci. 2009;14:4457–63.CrossRefGoogle Scholar
  29. 29.
    Castro MAA, Filho JLR, Dalmolin RJS, Sinigaglia M, Moreira JCF, Mombach JCM, et al. ViaComplex: software for landscape analysis of gene expression networks in genomic context. Bioinformatics. 2009;25:1468–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Castro MAA, Mombach JCM, de Almeida RMC, Moreira JCF. Impaired expression of NER gene network in sporadic solid tumors. 2007;35:1859–67.Google Scholar
  31. 31.
    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL. Gene set enrichment analysis : A knowledge-based approach for interpreting genome-wide. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–5.PubMedGoogle Scholar
  33. 33.
    Wendel A. Glutathione peroxidase. Methods Enzymol. 1981;77:325–33.CrossRefPubMedGoogle Scholar
  34. 34.
    Dresch MTK, Rossato SB, Kappel VD, Biegelmeyer R, Hoff MLM, Mayorga P, et al. Optimization and validation of an alternative method to evaluate total reactive antioxidant potential. Anal Biochem. 2009;385:107–14.CrossRefPubMedGoogle Scholar
  35. 35.
    Sak A, Stuschke M, Groneberg M, Kübler D, Pöttgen C, Eberhardt WEE. Inhibiting the aurora B kinase potently suppresses repopulation during fractionated irradiation of human lung cancer cell lines. Int J Radiat Oncol Biol Phys. 2012;84:492–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Saintigny P, Peng S, Zhang L, Sen B, Wistuba II, Lippman SM, et al. Global evaluation of Eph receptors and ephrins in lung adenocarcinomas identifies EphA4 as an inhibitor of cell migration and invasion. Mol Cancer Ther. 2012;11:2021–32.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wang D, Xiang D-B, Yang X-Q, Chen L-S, Li M-X, Zhong Z-Y, et al. APE1 overexpression is associated with cisplatin resistance in non-small cell lung cancer and targeted inhibition of APE1 enhances the activity of cisplatin in A549 cells. Lung Cancer. 2009;66:298–304.CrossRefPubMedGoogle Scholar
  38. 38.
    Yoo DG, Song YJ, Cho EJ, Lee SK, Park JB, Yu JH, et al. Alteration of APE1/ref-1 expression in non-small cell lung cancer: the implications of impaired extracellular superoxide dismutase and catalase antioxidant systems. Lung Cancer. 2008;60:277–84.CrossRefPubMedGoogle Scholar
  39. 39.
    Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 2010;48:749–62.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Klamt F, Shacter E. Taurine chloramine, an oxidant derived from neutrophils, induces apoptosis in human B lymphoma cells through mitochondrial damage. J Biol Chem. 2005;280:21346–52.CrossRefPubMedGoogle Scholar
  41. 41.
    Werner HMJ, Mills GB, Ram PT. Cancer Systems Biology: a peek into the future of patient care? Nat Rev Clin Oncol. 2014;11(3):167–76.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cherian M. Metallothioneins in human tumors and potential roles in carcinogenesis. Mutat Res Mol Mech Mutagen. 2003;533:201–9.CrossRefGoogle Scholar
  43. 43.
    Lincoln DT, Ali Emadi EM, Tonissen KF, Clarke FM. The thioredoxin-thioredoxin reductase system: over-expression in human cancer. Anticancer Res. 2003;23:2425–33.PubMedGoogle Scholar
  44. 44.
    Rotblat B, Grunewald TGP, Leprivier G, Melino G, Knight RA. Anti-oxidative stress response genes: bioinformatic analysis of their expression and relevance in multiple cancers. Oncotarget. 2013;4(12):2577–90.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Cadenas C, Franckenstein D, Schmidt M, Gehrmann M, Hermes M, Geppert B, et al. Role of thioredoxin reductase 1 and thioredoxin interacting protein in prognosis of breast cancer. Breast Cancer Res. 2010;12:R44.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Dunn LL, Buckle AM, Cooke JP, Ng MKC. The emerging role of the thioredoxin system in angiogenesis. Arterioscler Thromb Vasc Biol. 2010;30:2089–98.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lim JY, Yoon SO, Hong SW, Kim JW, Choi SH, Cho JY. Thioredoxin and thioredoxin-interacting protein as prognostic markers for gastric cancer recurrence. World J Gastroenterol. 2012;18:5581–8.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Morrison JA, Pike LA, Sams SB, Sharma V, Zhou Q, Severson JJ, et al. Thioredoxin interacting protein (TXNIP) is a novel tumor suppressor in thyroid cancer. Mol Cancer. 2014;13:62.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Nishinaka Y. Loss of thioredoxin-binding protein-2/vitamin D3 up-regulated protein 1 in human T-cell leukemia virus type I-dependent T-cell transformation: implications for adult T-cell leukemia leukemogenesis. Cancer Res. 2004;64:1287–92.CrossRefPubMedGoogle Scholar
  50. 50.
    Nishizawa K, Nishiyama H, Matsui Y, Kobayashi T, Saito R, Kotani H, et al. Thioredoxin-interacting protein suppresses bladder carcinogenesis. Carcinogenesis. 2011;32:1459–66.CrossRefPubMedGoogle Scholar
  51. 51.
    Burhans WC, Heintz NH. The cell cycle is a redox cycle: linking phase-specific targets to cell fate. Free Radic Biol Med. 2009;47:1282–93.CrossRefPubMedGoogle Scholar
  52. 52.
    Policastro L, Molinari B, Larcher F, Blanco P, Podhajcer OL, Costa CS, et al. Imbalance of antioxidant enzymes in tumor cells and inhibition of proliferation and malignant features by scavenging hydrogen peroxide. Mol Carcinog. 2004;39:103–13.CrossRefPubMedGoogle Scholar
  53. 53.
    Ibañez IL, Policastro LL, Tropper I, Bracalente C, Palmieri MA, Rojas PA, et al. H2O2 scavenging inhibits G1/S transition by increasing nuclear levels of p27KIP1. Cancer Lett. 2011;305:58–68.CrossRefPubMedGoogle Scholar
  54. 54.
    Goh J, Enns L, Fatemie S, Hopkins H, Morton J, Pettan-Brewer C, et al. Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC Cancer. 2011;11:191.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Nishikawa M, Hashida M, Takakura Y. Catalase delivery for inhibiting ROS-mediated tissue injury and tumor metastasis. Adv Drug Deliv Rev. 2009;61:319–26.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Leonardo Lisboa da Motta
    • 1
    • 2
  • Marco Antonio De Bastiani
    • 1
    • 2
  • Fernanda Stapenhorst
    • 1
    • 2
  • Fábio Klamt
    • 1
    • 2
  1. 1.Laboratory of Cellular Biochemistry, Department of BiochemistryICBS/UFRGSPorto AlegreBrazil
  2. 2.National Institutes of Science and Technology–Translational Medicine (INCT-TM)Porto AlegreBrazil

Personalised recommendations