Tumor Biology

, Volume 36, Issue 6, pp 4661–4670 | Cite as

Association of HPV with genetic and epigenetic alterations in colorectal adenocarcinoma from Indian population

  • Ruhina S Laskar
  • Fazlur R Talukdar
  • Javed H Choudhury
  • Seram Anil Singh
  • Sharbadeb Kundu
  • Bishal Dhar
  • Rosy Mondal
  • Sankar Kumar Ghosh
Research Article


Several studies from developing countries have shown human papillomavirus to be associated with colorectal cancers, but the molecular characteristics of such cancers are poorly known. We studied the various genetic variations like microsatellite instability (MSI), oncogenic mutations and epigenetic deregulations like CpG island methylation in HPV associated and nonassociated colorectal cancer patients from Indian population. HPV DNA was detected by PCR using My09/My11 and Gp5+/Gp6+ consensus primers and typed using HPV16 and HPV18 specific primers. MSI was detected using BAT 25 and BAT 26 markers, and mutation of KRAS, TP53 and BRAF V600E were detected by direct sequencing. Methyl specific polymerase chain reaction (MSP) was used to determine promoter methylation of the classical CIMP panel markers (P16, hMLH1, MINT1, MINT2 and MINT31) and other tumour-related genes (DAPK, RASSF1, BRCA1 and GSTP1). HPV DNA was detected in 34/93 (36.5 %) colorectal tumour tissues, HPV 18 being the predominant high-risk type. MSI was detected in 7.5 % cases; KRAS codon 12, 13, BRAF V600E and TP53 mutations were detected in 36.5, 3.2 and 37.6 % of the cases, respectively. CIMP-high was observed in 44.08 % cases. HPV presence was not associated with age, stage or grade of tumours, MSI or mutations in KRAS, TP53 or BRAF genes. Higher methylation frequencies of all genes/loci under study except RASSF1, as well as significantly higher CIMP-high characteristics were observed in HPV positive tumours as compared to negative cases. HPV in association with genetic and epigenetic features might be a potent risk factor for colorectal cancer in Indian population.


Colorectal cancer HPV Genetic alterations Epigenetics CIMP KRAS BRAF P53 MSI Northeast India 



We thank the Department of Biotechnology, Government of India, DBT, for providing infrastructural support (grant number BT/Med/NE-SFC/2009). Our sincere thanks go to the Cachar Cancer Hospital and Research, Silchar Medical College and Hospital, Assam, and Agartalata Government Medical College, Tripura, for providing samples and data.

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

13277_2015_3114_MOESM1_ESM.pdf (33 kb)
ESM 1 (PDF 33 kb)


  1. 1.
    Siegel R, Desantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer J Clin. 2014;64:104–17.CrossRefPubMedGoogle Scholar
  2. 2.
    de la Chapelle A. Genetic predisposition to colorectal cancer. Nat Rev Cancer. 2004;4:769–80.CrossRefPubMedGoogle Scholar
  3. 3.
    Lao VV, Grady WM. Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol. 2011;8:686–700.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hutter CM, Chang-Claude J, Slattery ML, Pflugeisen BM, Lin Y, Duggan D, et al. Characterization of gene-environment interactions for colorectal cancer susceptibility loci. Cancer Res. 2012;72:2036–44.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Baandrup L, Thomsen LT, Olesen TB, Andersen KK, Norrild B, Kjaer SK. The prevalence of human papillomavirus in colorectal adenomas and adenocarcinomas: a systematic review and meta-analysis. Eur J Cancer. 2014;50:1446–61.CrossRefPubMedGoogle Scholar
  6. 6.
    Johnson CM, Wei C, Ensor JE, Smolenski DJ, Amos CI, Levin B, et al. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control. 2013;24:1207–22.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cheng JY, Sheu LF, Meng CL, Lee WH, Lin JC. Detection of human papillomavirus DNA in colorectal carcinomas by polymerase chain reaction. Gut. 1995;37:87–90.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Damin DC, Caetano MB, Rosito MA, Schwartsmann G, Damin AS, Frazzon AP, et al. Evidence for an association of human papillomavirus infection and colorectal cancer. European journal of surgical oncology. Journal Eur Soc Surg Oncol Br Assoc Surg Oncol. 2007;33:569–74.CrossRefGoogle Scholar
  9. 9.
    Deschoolmeester V, Van Marck V, Baay M, Weyn C, Vermeulen P, Van Marck E, et al. Detection of HPV and the role of p16INK4A overexpression as a surrogate marker for the presence of functional HPV oncoprotein E7 in colorectal cancer. BMC Cancer. 2010;10:117.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gornick MC, Castellsague X, Sanchez G, Giordano TJ, Vinco M, Greenson JK, et al. Human papillomavirus is not associated with colorectal cancer in a large international study. Cancer Causes Control. 2010;21:737–43.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Karpinski P, Myszka A, Ramsey D, Kielan W, Sasiadek MM. Detection of viral DNA sequences in sporadic colorectal cancers in relation to CpG island methylation and methylator phenotype. Tumour Biol : Journal Int Soc Oncodev Biol Med. 2011;32:653–9.CrossRefGoogle Scholar
  12. 12.
    Burnett-Hartman AN, Newcomb PA, Mandelson MT, Galloway DA, Madeleine MM, Wurscher MA, et al. No evidence for human papillomavirus in the etiology of colorectal polyps. Cancer Epidemiol, Biomarkers Prev : Publication Am Assoc Cancer Res, Cospon Am Society Prev Oncol. 2011;20:2288–97.CrossRefGoogle Scholar
  13. 13.
    Damin DC, Ziegelmann PK, Damin AP. Human papillomavirus infection and colorectal cancer risk: a meta-analysis. Color Dis:Off J Assoc Colop G B Irel. 2013;15:e420–428.CrossRefGoogle Scholar
  14. 14.
    Al-Sohaily S, Biankin A, Leong R, Kohonen-Corish M, Warusavitarne J. Molecular pathways in colorectal cancer. J Gastroenterol Hepatol. 2012;27:1423–31.CrossRefPubMedGoogle Scholar
  15. 15.
    Vilar E, Gruber SB. Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol. 2010;7:153–62.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mojarad EN, Kuppen PJ, Aghdaei HA, Zali MR. The CPG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol Hepatol Bed Bench. 2013;6:120–8.PubMedCentralGoogle Scholar
  17. 17.
    Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10:550–60.CrossRefPubMedGoogle Scholar
  18. 18.
    Hernandez JM, Siegel EM, Riggs B, Eschrich S, Elahi A, Qu X, et al. DNA methylation profiling across the spectrum of HPV-associated anal squamous neoplasia. PLoS One. 2012;7:e50533.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Lechner M, Fenton T, West J, Wilson G, Feber A, Henderson S, et al. Identification and functional validation of HPV-mediated hypermethylation in head and neck squamous cell carcinoma. Genome Med. 2013;5:15.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mondal R, Ghosh SK, Talukdar FR, Laskar RS. Association of mitochondrial D-loop mutations with GSTM1 and GSTT1 polymorphisms in oral carcinoma: a case control study from Northeast India. Oral Oncol. 2013;49:345–53.CrossRefPubMedGoogle Scholar
  21. 21.
    Ghosh SK, Choudhury B, Hansa J, Mondal R, Singh M, Singh M, et al. Human papillomavirus testing for suspected cervical cancer patients from Southern Assam by fast-PCR. Asian Pac J Cancer Prev. 2011;12:749–51.PubMedGoogle Scholar
  22. 22.
    An ZW, Xie LL, Cheng H, Zhou Y, Zhang Q, He XG, et al. A silver staining procedure for nucleic acids in polyacrylamide gels without fixation and pretreatment. Anal Biochem. 2009;391:77–9.CrossRefPubMedGoogle Scholar
  23. 23.
    Zochbauer-Muller S, Fong KM, Virmani AK, Geradts J, Gazdar AF, Minna JD. Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res. 2001;61:249–55.PubMedGoogle Scholar
  24. 24.
    Lee S, Cho NY, Yoo EJ, Kim JH, Kang GH. CpG island methylator phenotype in colorectal cancers: comparison of the new and classic CpG island methylator phenotype marker panels. Arch Path Lab Med. 2008;132:1657–65.PubMedGoogle Scholar
  25. 25.
    Talukdar FR, Ghosh SK, Laskar RS, Mondal R. Epigenetic, genetic and environmental interactions in esophageal squamous cell carcinoma from Northeast India. PLoS One. 2013;8:e60996.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ye C, Liu J, Ren F, Okafo N. Design of experiment and data analysis by JMP (sas institute) in analytical method validation. J Pharm Biomed Anal. 2000;23:581–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Perez LO, Abba MC, Laguens RM, Golijow CD. Analysis of adenocarcinoma of the colon and rectum: detection of human papillomavirus (HPV) DNA by polymerase chain reaction. Colorectal Dis : Off J Assoc Colop G B Irel. 2005;7:492–5.CrossRefGoogle Scholar
  28. 28.
    Merckx M, Liesbeth WV, Arbyn M, Meys J, Weyers S, Temmerman M, et al. Transmission of carcinogenic human papillomavirus types from mother to child: a meta-analysis of published studies. Eur J Cancer Prev : Off J Eur Cancer Prev Organ. 2013;22:277–85.CrossRefGoogle Scholar
  29. 29.
    Bodaghi S, Wood LV, Roby G, Ryder C, Steinberg SM, Zheng ZM. Could human papillomaviruses be spread through blood? J Clin Microbiol. 2005;43:5428–34.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kay P, Allan B, Denny L, Hoffman M, Williamson AL. Detection of HPV 16 and HPV 18 DNA in the blood of patients with cervical cancer. J Med Virol. 2005;75:435–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Pao CC, Hor JJ, Yang FP, Lin CY, Tseng CJ. Detection of human papillomavirus mRNA and cervical cancer cells in peripheral blood of cervical cancer patients with metastasis. J Clin Oncol : Off J Am Soc Clin Oncol. 1997;15:1008–12.CrossRefGoogle Scholar
  32. 32.
    Chen AC, Keleher A, Kedda MA, Spurdle AB, McMillan NA, Antonsson A. Human papillomavirus DNA detected in peripheral blood samples from healthy Australian male blood donors. J Med Virol. 2009;81:1792–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Laskar RS, Talukdar FR, Mondal R, Kannan R, Ghosh SK. High frequency of young age rectal cancer in a tertiary care centre of Southern Assam, Northeast India. Indian J Med Res. 2014;139:314–8.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Raman R, Kotapalli V, Adduri R, Gowrishankar S, Bashyam L, Chaudhary A, et al. Evidence for possible non-canonical pathway(s) driven early-onset colorectal cancer in India. Mol Carcinog. 2014;53 Suppl 1:E181–186.CrossRefPubMedGoogle Scholar
  35. 35.
    Sengupta N, Yau C, Sakthianandeswaren A, Mouradov D, Gibbs P, Suraweera N, et al. Analysis of colorectal cancers in British Bangladeshi identifies early onset, frequent mucinous histotype and a high prevalence of RBFOX1 deletion. Mol Cancer. 2013;12:1.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sameer AS, Abdullah S, Nissar S, Rasool R, Shah ZA, Afroze D, et al. The blues of P(16)INK(4a): aberrant promoter methylation and association with colorectal cancer in the Kashmir valley. Mol Med Reports. 2012;5:1053–7.Google Scholar
  37. 37.
    Sinha R, Hussain S, Mehrotra R, Kumar RS, Kumar K, Pande P, et al. Kras gene mutation and RASSF1A, FHIT and MGMT gene promoter hypermethylation: indicators of tumor staging and metastasis in adenocarcinomatous sporadic colorectal cancer in Indian population. PLoS One. 2013;8:e60142.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.CrossRefGoogle Scholar
  39. 39.
    Zandberg DP, Bhargava R, Badin S, Cullen KJ. The role of human papillomavirus in nongenital cancers. CA Cancer J Clin. 2013;63:57–81.CrossRefPubMedGoogle Scholar
  40. 40.
    Maruyama H, Yasui T, Ishikawa-Fujiwara T, Morii E, Yamamoto Y, Yoshii T, et al. Human papillomavirus and p53 mutations in head and neck squamous cell carcinoma among Japanese population. Cancer Sci. 2014;105:409–17.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Crook T, Wrede D, Tidy JA, Mason WP, Evans DJ, Vousden KH. Clonal p53 mutation in primary cervical cancer: association with human-papillomavirus-negative tumours. Lancet. 1992;339:1070–3.CrossRefPubMedGoogle Scholar
  42. 42.
    Yoshida S, Kajitani N, Satsuka A, Nakamura H, Sakai H. Ras modifies proliferation and invasiveness of cells expressing human papillomavirus oncoproteins. J Virol. 2008;82:8820–7.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Durst M, Gallahan D, Jay G, Rhim JS. Glucocorticoid-enhanced neoplastic transformation of human keratinocytes by human papillomavirus type 16 and an activated ras oncogene. Virology. 1989;173:767–71.CrossRefPubMedGoogle Scholar
  44. 44.
    Chen TM, Defendi V. Functional interaction of p53 with HPV18 E6, c-myc and H-ras in 3T3 cells. Oncogene. 1992;7:1541–7.PubMedGoogle Scholar
  45. 45.
    Kang S, Kim HS, Seo SS, Park SY, Sidransky D, Dong SM. Inverse correlation between RASSF1A hypermethylation, KRAS and BRAF mutations in cervical adenocarcinoma. Gynecol Oncol. 2007;105:662–6.CrossRefPubMedGoogle Scholar
  46. 46.
    Leonard SM, Wei W, Collins SI, Pereira M, Diyaf A, Constandinou-Williams C, et al. Oncogenic human papillomavirus imposes an instructive pattern of DNA methylation changes which parallel the natural history of cervical HPV infection in young women. Carcinogenesis. 2012;33:1286–93.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Ruhina S Laskar
    • 1
  • Fazlur R Talukdar
    • 1
  • Javed H Choudhury
    • 1
  • Seram Anil Singh
    • 1
  • Sharbadeb Kundu
    • 1
  • Bishal Dhar
    • 1
  • Rosy Mondal
    • 1
  • Sankar Kumar Ghosh
    • 1
  1. 1.Molecular Medicine Laboratory, Department of BiotechnologyAssam UniversitySilcharIndia

Personalised recommendations