Tumor Biology

, Volume 36, Issue 6, pp 4611–4616 | Cite as

A novel tumor suppressor gene in basal cell carcinoma: inhibition of growth factor-2

  • Metin Temel
  • Arif Turkmen
  • Recep Dokuyucu
  • Cengiz Cevik
  • Serdar Oztuzcu
  • Beyhan Cengiz
  • Mehmet Mutaf
Research Article


In loss of heterozygosity (LOH) studies at the chromosome 4q22-35 region, it was shown that the amount of deletion was high in basal cell carcinoma (BCC). It has been proposed that genes located in this chromosomal region could be tumor suppressor genes in BCC. It has been thought that deletions in the ING2 gene located in the same region can play a role in the pathophysiology of BCC and that deletions occurring in this region may influence the level of ING2 expression in BCC. Tumoral and non-tumoral tissues from 75 patients with BCC (45 men and 30 women) were included to the study. Lesions were excised by a surgical margin of 0.5 cm. After excision, RNA was isolated from tumoral and non-tumoral tissue samples. ING2 messenger RNA (mRNA) expression level was determined in tumoral and non-tumoral tissues by the real-time polymerase chain reaction (RT-PCR). It was detected that ING2 mRNA expression level decreased in tumoral tissues when compared to non-tumoral tissues from BCC patients (p = 0.0001). It was found that expression levels of this gene were comparable among patients with primary, recurrent, or multiple BCC. It is thought that ING2 gene expression level could contribute to the development of BCC but not be associated with the stage and the prognosis of the tumor.


Basal cell carcinomas Tumor suppressor genes ING gene family Skin cancer UV radiation 



This study with TF.11.11 ID number was supported by Gaziantep University Scientific Research Project Coordination.

Conflicts of interest



  1. 1.
    Miller SJ. Etiology and pathogenesis of basal cell carcinoma. Clin Dermatol. 1995;13(6):527–36.CrossRefPubMedGoogle Scholar
  2. 2.
    Lu YP, Lou YR, Li XH, Xie JG, Brash D, Huang MT, et al. Stimulatory effect of oral administration of green tea or caffeine on ultraviolet light-induced increases in epidermal wild-type p53, p21(WAF1/CIP1), and apoptotic sunburn cells in SKH-1 mice. Cancer Res. 2000;60(17):4785–91.PubMedGoogle Scholar
  3. 3.
    Sahl WJ, Glore S, Garrison P, Oakleaf K, Johnson SD. Basal cell carcinoma and lifestyle characteristics. Int J Dermatol. 1995;34(6):398–402.CrossRefPubMedGoogle Scholar
  4. 4.
    van der Riet P, Karp D, Farmer E, Wei Q, Grossman L, Tokino K, et al. Progression of basal cell carcinoma through loss of chromosome 9q and inactivation of a single p53 allele. Cancer Res. 1994;54(1):25–7.PubMedGoogle Scholar
  5. 5.
    Shen T, Park WS, Boni R, Saini N, Pham T, Lash AE, et al. Detection of loss of heterozygosity on chromosome 9q22.3 in microdissected sporadic basal cell carcinoma. Hum Pathol. 1999;30(3):284–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Jin Y, Martins C, Salemark L, Persson B, Jin C, Miranda J, et al. Nonrandom karyotypic features in basal cell carcinomas of the skin. Cancer Genet Cytogenet. 2001;131(2):109–19.CrossRefPubMedGoogle Scholar
  7. 7.
    Sironi E, Cerri A, Tomasini D, Sirchia SM, Porta G, Rossella F, et al. Loss of heterozygosity on chromosome 4q32-35 in sporadic basal cell carcinomas: evidence for the involvement of p33ING2/ING1L and SAP30 genes. J Cutan Pathol. 2004;31(4):318–22.CrossRefPubMedGoogle Scholar
  8. 8.
    Guerillon C, Larrieu D, Pedeux R. ING1 and ING2: multifaceted tumor suppressor genes. Cell Mol Life Sci: CMLS. 2013;70(20):3753–72. doi: 10.1007/s00018-013-1270-z.CrossRefPubMedGoogle Scholar
  9. 9.
    Wang J, Chin MY, Li G. The novel tumor suppressor p33ING2 enhances nucleotide excision repair via inducement of histone H4 acetylation and chromatin relaxation. Cancer Res. 2006;66(4):1906–11. doi: 10.1158/0008-5472.CAN-05-3444.CrossRefPubMedGoogle Scholar
  10. 10.
    Gallagher RP, Lee TK. Adverse effects of ultraviolet radiation: a brief review. Prog Biophys Mol Biol. 2006;92(1):119–31. doi: 10.1016/j.pbiomolbio.2006.02.011.CrossRefPubMedGoogle Scholar
  11. 11.
    Castori M, Morrone A, Kanitakis J, Grammatico P. Genetic skin diseases predisposing to basal cell carcinoma. Eur J Dermatol: EJD. 2012;22(3):299–309. doi: 10.1684/ejd.2011.1633.PubMedGoogle Scholar
  12. 12.
    Sehgal VN, Chatterjee K, Pandhi D, Khurana A. Basal cell carcinoma: pathophysiology. Skinmed. 2014;12(3):176–81.PubMedGoogle Scholar
  13. 13.
    Lam C, Ou JC, Billingsley EM. "PTCH"-ing it together: a basal cell nevus syndrome review. Dermatol Surg: Off Publ Am Soc Dermatol Surg. 2013;39(11):1557–72. doi: 10.1111/dsu.12241.CrossRefGoogle Scholar
  14. 14.
    Heitzer E, Bambach I, Dandachi N, Horn M, Wolf P. PTCH promoter methylation at low level in sporadic basal cell carcinoma analysed by three different approaches. Exp Dermatol. 2010;19(10):926–8. doi: 10.1111/j.1600-0625.2010.01120.x.CrossRefPubMedGoogle Scholar
  15. 15.
    Suarez-Martinez EB, Ruiz A, Matias J, Morales L, Cruz A, Vazquez D, et al. Early-onset of sporadic basal-cell carcinoma: germline mutations in the TP53, PTCH, and XPD genes. P R Health Sci J. 2007;26(4):349–54.PubMedGoogle Scholar
  16. 16.
    Garkavtsev I, Kazarov A, Gudkov A, Riabowol K. Suppression of the novel growth inhibitor p33ING1 promotes neoplastic transformation. Nat Genet. 1996;14(4):415–20. doi: 10.1038/ng1296-415.CrossRefPubMedGoogle Scholar
  17. 17.
    Guerillon C, Bigot N, Pedeux R. The ING tumor suppressor genes: status in human tumors. Cancer Lett. 2014;345(1):1–16. doi: 10.1016/j.canlet.2013.11.016.CrossRefPubMedGoogle Scholar
  18. 18.
    Coles AH, Jones SN. The ING gene family in the regulation of cell growth and tumorigenesis. J Cell Physiol. 2009;218(1):45–57. doi: 10.1002/jcp.21583.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Li XH, Kikuchi K, Zheng Y, Noguchi A, Takahashi H, Nishida T, et al. Downregulation and translocation of nuclear ING4 is correlated with tumorigenesis and progression of head and neck squamous cell carcinoma. Oral Oncol. 2011;47(3):217–23. doi: 10.1016/j.oraloncology.2011.01.004.CrossRefPubMedGoogle Scholar
  20. 20.
    Garate M, Campos EI, Bush JA, Xiao H, Li G. Phosphorylation of the tumor suppressor p33(ING1b) at Ser-126 influences its protein stability and proliferation of melanoma cells. FASEB J: Off Publ Fed Am Soc Exp Biol. 2007;21(13):3705–16. doi: 10.1096/fj.07-8069com.CrossRefGoogle Scholar
  21. 21.
    Cai L, Li X, Zheng S, Wang Y, Li H, Yang J, et al. Inhibitor of growth 4 is involved in melanomagenesis and induces growth suppression and apoptosis in melanoma cell line M14. Melanoma Res. 2009;19(1):1–7. doi: 10.1097/CMR.0b013e32831bc42f.CrossRefPubMedGoogle Scholar
  22. 22.
    Okano T, Gemma A, Hosoya Y, Hosomi Y, Nara M, Kokubo Y, et al. Alterations in novel candidate tumor suppressor genes, ING1 and ING2 in human lung cancer. Oncol Rep. 2006;15(3):545–9.PubMedGoogle Scholar
  23. 23.
    Coles AH, Marfella CG, Imbalzano AN, Steinman HA, Garlick DS, Gerstein RM, et al. p37Ing1b regulates B-cell proliferation and cooperates with p53 to suppress diffuse large B-cell lymphomagenesis. Cancer Res. 2008;68(21):8705–14. doi: 10.1158/0008-5472.CAN-08-0923.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nouman GS, Anderson JJ, Wood KM, Lunec J, Hall AG, Reid MM, et al. Loss of nuclear expression of the p33(ING1b) inhibitor of growth protein in childhood acute lymphoblastic leukaemia. J Clin Pathol. 2002;55(8):596–601.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Matissek KJ, Mossalam M, Okal A, Lim CS. The DNA binding domain of p53 is sufficient to trigger a potent apoptotic response at the mitochondria. Mol Pharm. 2013;10(10):3592–602. doi: 10.1021/mp400380s.CrossRefPubMedGoogle Scholar
  26. 26.
    Leung KM, Po LS, Tsang FC, Siu WY, Lau A, Ho HT, et al. The candidate tumor suppressor ING1b can stabilize p53 by disrupting the regulation of p53 by MDM2. Cancer Res. 2002;62(17):4890–3.PubMedGoogle Scholar
  27. 27.
    Yu Z, Wang H, Zhang L, Tang A, Zhai Q, Wen J, et al. Both p53-PUMA/NOXA-Bax-mitochondrion and p53-p21cip1 pathways are involved in the CDglyTK-mediated tumor cell suppression. Biochem Biophys Res Commun. 2009;386(4):607–11. doi: 10.1016/j.bbrc.2009.06.083.CrossRefPubMedGoogle Scholar
  28. 28.
    Wei Q, He W, Lu Y, Yao J, Cao X. Effect of the tumor suppressor gene ING4 on the proliferation of MCF-7 human breast cancer cells. Oncol Lett. 2012;4(3):438–42. doi: 10.3892/ol.2012.744.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Unoki M, Kumamoto K, Robles AI, Shen JC, Zheng ZM, Harris CC. A novel ING2 isoform, ING2b, synergizes with ING2a to prevent cell cycle arrest and apoptosis. FEBS Lett. 2008;582(28):3868–74. doi: 10.1016/j.febslet.2008.10.024.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nagashima M, Shiseki M, Miura K, Hagiwara K, Linke SP, Pedeux R, et al. DNA damage-inducible gene p33ING2 negatively regulates cell proliferation through acetylation of p53. Proc Natl Acad Sci U S A. 2001;98(17):9671–6. doi: 10.1073/pnas.161151798.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang HK, Pan K, Wang H, Weng DS, Song HF, Zhou J, et al. Decreased expression of ING2 gene and its clinicopathological significance in hepatocellular carcinoma. Cancer Lett. 2008;261(2):183–92. doi: 10.1016/j.canlet.2007.11.019.CrossRefPubMedGoogle Scholar
  32. 32.
    Bolshakov S, Walker CM, Strom SS, Selvan MS, Clayman GL, El-Naggar A, et al. p53 mutations in human aggressive and nonaggressive basal and squamous cell carcinomas. Clin Cancer Res: Off J Am Assoc Cancer Res. 2003;9(1):228–34.Google Scholar
  33. 33.
    Luongo C, Ambrosio R, Salzano S, Dlugosz AA, Missero C, Dentice M. The sonic hedgehog-induced type 3 deiodinase facilitates tumorigenesis of basal cell carcinoma by reducing Gli2 inactivation. Endocrinology. 2014;155(6):2077–88. doi: 10.1210/en.2013-2108.CrossRefPubMedGoogle Scholar
  34. 34.
    Schulte G. International Union of Basic and Clinical Pharmacology. LXXX. The class Frizzled receptors. Pharmacol Rev. 2010;62(4):632–67. doi: 10.1124/pr.110.002931.CrossRefPubMedGoogle Scholar
  35. 35.
    Liu J, Xu XF, Yang WJ. [The effects of Hedgehog-Gli 1 signaling pathway on proliferation and apoptosis of hepatic stellate cells]. Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi. Chin J Hepatol. 2009;17(1):33–7.Google Scholar
  36. 36.
    Crowson AN. Basal cell carcinoma: biology, morphology and clinical implications. Mod Pathol: Off J US Can Acad Pathol Inc. 2006;19 Suppl 2:S127–47. doi: 10.1038/modpathol.3800512.CrossRefGoogle Scholar
  37. 37.
    Ahmed NU, Ueda M, Ichihashi M. p21WAF1/CIP1 expression in non-melanoma skin tumors. J Cutan Pathol. 1997;24(4):223–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases. Nature. 1993;366(6456):701–4. doi: 10.1038/366701a0.CrossRefPubMedGoogle Scholar
  39. 39.
    Lu F, Dai DL, Martinka M, Ho V, Li G. Nuclear ING2 expression is reduced in human cutaneous melanomas. Br J Cancer. 2006;95(1):80–6. doi: 10.1038/sj.bjc.6603205.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Metin Temel
    • 1
  • Arif Turkmen
    • 2
  • Recep Dokuyucu
    • 3
  • Cengiz Cevik
    • 4
  • Serdar Oztuzcu
    • 5
  • Beyhan Cengiz
    • 6
  • Mehmet Mutaf
    • 7
  1. 1.Department of Plastic and Reconstructive Surgery, School of MedicineMustafa Kemal UniversityHatayTurkey
  2. 2.Department of Plastic and Reconstructive Surgery, School of Medicineİstanbul UniversityİstanbulTurkey
  3. 3.Department of Physiology, School of MedicineMustafa Kemal UniversityHatayTurkey
  4. 4.Department of Otolaryngology, School of MedicineMustafa Kemal UniversityHatayTurkey
  5. 5.Department of Medical Biology, School of MedicineGaziantep UniversityGaziantepTurkey
  6. 6.Department of Medical Genetic, School of MedicineGazi UniversityAnkaraTurkey
  7. 7.Department of Plastic and Reconstructive Surgery, School of MedicineGaziantep UniversityGaziantepTurkey

Personalised recommendations