Advertisement

Tumor Biology

, Volume 36, Issue 2, pp 503–513 | Cite as

Post-transcriptional regulation of long noncoding RNAs in cancer

  • Xuefei Shi
  • Ming Sun
  • Ying Wu
  • Yanwen Yao
  • Hongbing Liu
  • Guannan Wu
  • Dongmei Yuan
  • Yong Song
Review

Abstract

It is a great surprise that the genomes of mammals and other eukaryotes harbor many thousands of long noncoding RNAs (lncRNAs). Although these long noncoding transcripts were once considered to be simply transcriptional noise or cloning artifacts, multiple studies have suggested that lncRNAs are emerging as new players in diverse human diseases, especially in cancer, and that the molecular mechanisms of lncRNAs need to be elucidated. More recently, evidence has begun to accumulate describing the complex post-transcriptional regulation in which lncRNAs are involved. It was reported that lncRNAs can be implicated in degradation, translation, pre-messenger RNA (mRNA) splicing, and protein activities and even as microRNAs (miRNAs) sponges in both a sequence-dependent and sequence-independent manner. In this review, we present an updated vision of lncRNAs and summarize the mechanism of post-transcriptional regulation by lncRNAs, providing new insight into the functional cellular roles that they may play in human diseases, with a particular focus on cancers.

Keywords

Long noncoding RNA Mechanism Post-transcriptional regulation Cancer 

Abbreviations

lncRNAs

Long noncoding RNAs

miRNA

MicroRNA

ceRNA

Competitive endogenous RNA

siRNAs

Small interfering RNAs

piRNAs

Piwi-associated RNAs

Xist

X inactive specific transcript

HOTAIR

Hox transcript antisense intergenic RNA

MREs

MicroRNA response elements

HULC

Highly upregulated in liver cancer

HCC

Hepatocellular carcinoma

PTCSC3

Papillary thyroid carcinoma susceptibility candidate 3

PTC

Papillary thyroid carcinoma

snRNPs

Small nuclear ribonucleoproteins

hnRNPs

Heterogeneous nuclear ribonucleoproteins

MALAT1

Metastasis-associated lung adenocarcinoma transcript 1

NAT

Natural antisense transcript

UTR

Untranslated region

EMT

Epithelial–mesenchymal transition

CHO

Chinese hamster ovary

Cdk6

Cyclin-dependent kinase 6

SMD

Staufen 1-mediated mRNA decay

1/2-sbsRNAs

Half-STAU1-binding site RNAs

TINCR

Terminal differentiation-induced ncRNA

RPA

RNase protection assay

Uchl1

Ubiquitin carboxyterminal hydrolase L1

treRNA

Translational regulatory lncRNA

RNP

Ribonucleoprotein

lncRNA-LET

LncRNA Low Expression in Tumor

H19

H19, imprinted maternally expressed transcript

PTENP1

Phosphatase and tensin homolog pseudogene 1

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81170064) and the Natural Science Foundation of China (No. 81302032). We apologize to all researchers whose relevant contributions were not cited due to space limitations.

Authors’ contributions

YS conceived of the review and participated in its design. XFS and MS drafted the manuscript. YW drafted Table 1. LW and YWY drafted the figures and the figure legends. HBL, DMY, and CHL participated in the design of the study and helped to draft the manuscript. All authors read and approved the final manuscript.

Conflicts of interest

None

References

  1. 1.
    Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89. doi: 10.1101/gr.132159.111.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. doi: 10.1038/35057062.PubMedGoogle Scholar
  3. 3.
    Stein LD. Human genome: end of the beginning. Nature. 2004;431(7011):915–6. doi: 10.1038/431915a.PubMedGoogle Scholar
  4. 4.
    Costa FF. Non-coding RNAs: meet thy masters. BioEssays : News Rev Mol Cell Dev Biol. 2010;32(7):599–608. doi: 10.1002/bies.200900112.Google Scholar
  5. 5.
    Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101–8. doi: 10.1038/nature11233.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer. 2011;10:38. doi: 10.1186/1476-4598-10-38.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10(3):155–9. doi: 10.1038/nrg2521.PubMedGoogle Scholar
  8. 8.
    Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55. doi: 10.1016/j.cell.2009.01.035.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Mo YY. MicroRNA regulatory networks and human disease. Cell Mol Life Sci : CMLS. 2012;69(21):3529–31. doi: 10.1007/s00018-012-1123-1.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14. doi: 10.1016/j.molcel.2011.08.018.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23(13):1494–504. doi: 10.1101/gad.1800909.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Brannan CI, Dees EC, Ingram RS, Tilghman SM. The product of the H19 gene may function as an RNA. Mol Cell Biol. 1990;10(1):28–36.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, et al. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell. 1992;71(3):515–26.PubMedGoogle Scholar
  14. 14.
    Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell. 2011;147(7):1537–50. doi: 10.1016/j.cell.2011.11.055.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Kornienko AE, Guenzl PM, Barlow DP, Pauler FM. Gene regulation by the act of long non-coding RNA transcription. BMC Biol. 2013;11:59. doi: 10.1186/1741-7007-11-59.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Tuck AC, Tollervey D. A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs. Cell. 2013;154(5):996–1009. doi: 10.1016/j.cell.2013.07.047.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629–41. doi: 10.1016/j.cell.2009.02.006.PubMedGoogle Scholar
  18. 18.
    Gutschner T, Diederichs S. The hallmarks of cancer: a long non-coding RNA point of view. RNA Biol. 2012;9(6):703–19. doi: 10.4161/rna.20481.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7. doi: 10.1038/nature07672.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS. Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A. 2008;105(2):716–21. doi: 10.1073/pnas.0706729105.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Ravasi T, Suzuki H, Pang KC, Katayama S, Furuno M, Okunishi R, et al. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res. 2006;16(1):11–9. doi: 10.1101/gr.4200206.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Moran VA, Perera RJ, Khalil AM. Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res. 2012;40(14):6391–400. doi: 10.1093/nar/gks296.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science (New York, NY). 2008;322(5902):750–6. doi: 10.1126/science.1163045.Google Scholar
  24. 24.
    Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science (New York, NY). 2010;329(5992):689–93. doi: 10.1126/science.1192002.Google Scholar
  25. 25.
    Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5. doi: 10.1038/nature02871.PubMedGoogle Scholar
  26. 26.
    Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in plants. Genes Dev. 2002;16(13):1616–26. doi: 10.1101/gad.1004402.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development (Cambridge, England). 2005;132(21):4653–62. doi: 10.1242/dev.02073.Google Scholar
  28. 28.
    Miska EA. How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev. 2005;15(5):563–8. doi: 10.1016/j.gde.2005.08.005.PubMedGoogle Scholar
  29. 29.
    Baehrecke EH. miRNAs: micro managers of programmed cell death. Curr Biol : CB. 2003;13(12):R473–5.PubMedGoogle Scholar
  30. 30.
    Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011;147(4):742–58. doi: 10.1016/j.cell.2011.10.033.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Caldas C, Brenton JD. Sizing up miRNAs as cancer genes. Nat Med. 2005;11(7):712–4. doi: 10.1038/nm0705-712.PubMedGoogle Scholar
  32. 32.
    Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev. 2009;28(3–4):369–78. doi: 10.1007/s10555-009-9188-5.PubMedGoogle Scholar
  33. 33.
    Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science (New York, NY). 2004;303(5654):83–6. doi: 10.1126/science.1091903.Google Scholar
  34. 34.
    Havelange V, Garzon R. MicroRNAs: emerging key regulators of hematopoiesis. Am J Hematol. 2010;85(12):935–42. doi: 10.1002/ajh.21863.PubMedGoogle Scholar
  35. 35.
    Seitz H. Redefining microRNA targets. Curr Biol : CB. 2009;19(10):870–3. doi: 10.1016/j.cub.2009.03.059.PubMedGoogle Scholar
  36. 36.
    Sarver AL, Subramanian S. Competing endogenous RNA database. Bioinformation. 2012;8(15):731–3. doi: 10.6026/97320630008731.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Cesana M, Daley GQ. Deciphering the rules of ceRNA networks. Proc Natl Acad Sci U S A. 2013;110(18):7112–3. doi: 10.1073/pnas.1305322110.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147(2):358–69. doi: 10.1016/j.cell.2011.09.028.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet. 2007;39(8):1033–7. doi: 10.1038/ng2079.PubMedGoogle Scholar
  40. 40.
    Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465(7301):1033–8. doi: 10.1038/nature09144.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353–8. doi: 10.1016/j.cell.2011.07.014.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Matouk IJ, Abbasi I, Hochberg A, Galun E, Dweik H, Akkawi M. Highly upregulated in liver cancer noncoding RNA is overexpressed in hepatic colorectal metastasis. Eur J Gastroenterol Hepatol. 2009;21(6):688–92.PubMedGoogle Scholar
  43. 43.
    Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM, et al. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology. 2007;132(1):330–42. doi: 10.1053/j.gastro.2006.08.026.PubMedGoogle Scholar
  44. 44.
    Wang J, Liu X, Wu H, Ni P, Gu Z, Qiao Y, et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 2010;38(16):5366–83. doi: 10.1093/nar/gkq285.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Jendrzejewski J, He H, Radomska HS, Li W, Tomsic J, Liyanarachchi S, et al. The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proc Natl Acad Sci U S A. 2012;109(22):8646–51. doi: 10.1073/pnas.1205654109.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Fan M, Li X, Jiang W, Huang Y, Li J, Wang Z. A long non-coding RNA, PTCSC3, as a tumor suppressor and a target of miRNAs in thyroid cancer cells. Exp Ther Med. 2013;5(4):1143–6. doi: 10.3892/etm.2013.933.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Liu Q, Huang J, Zhou N, Zhang Z, Zhang A, Lu Z, et al. LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res. 2013;41(9):4976–87. doi: 10.1093/nar/gkt182.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Qi P, Xu MD, Ni SJ, Huang D, Wei P, Tan C, et al. Low expression of LOC285194 is associated with poor prognosis in colorectal cancer. J Transl Med. 2013;11(1):122. doi: 10.1186/1479-5876-11-122.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Johnsson P, Ackley A, Vidarsdottir L, Lui WO, Corcoran M, Grander D, et al. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol. 2013;20(4):440–6. doi: 10.1038/nsmb.2516.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Poliseno L, Haimovic A, Christos PJ, Vega YSMEC, Shapiro R, Pavlick A, et al. Deletion of PTENP1 pseudogene in human melanoma. J Investig Dermatol. 2011;131(12):2497–500. doi: 10.1038/jid.2011.232.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Wang L, Guo ZY, Zhang R, Xin B, Chen R, Zhao J, et al. Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma. Carcinogenesis. 2013;34(8):1773–81. doi: 10.1093/carcin/bgt139.PubMedGoogle Scholar
  52. 52.
    Ben-Dov C, Hartmann B, Lundgren J, Valcarcel J. Genome-wide analysis of alternative pre-mRNA splicing. J Biol Chem. 2008;283(3):1229–33. doi: 10.1074/jbc.R700033200.PubMedGoogle Scholar
  53. 53.
    Blencowe BJ. Alternative splicing: new insights from global analyses. Cell. 2006;126(1):37–47. doi: 10.1016/j.cell.2006.06.023.PubMedGoogle Scholar
  54. 54.
    Matlin AJ, Clark F, Smith CW. Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol. 2005;6(5):386–98. doi: 10.1038/nrm1645.PubMedGoogle Scholar
  55. 55.
    Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–5. doi: 10.1038/ng.259.PubMedGoogle Scholar
  56. 56.
    Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature. 2008;456(7221):470–6. doi: 10.1038/nature07509.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Long JC, Caceres JF. The SR protein family of splicing factors: master regulators of gene expression. Biochem J. 2009;417(1):15–27. doi: 10.1042/bj20081501.PubMedGoogle Scholar
  58. 58.
    Luco RF, Misteli T. More than a splicing code: integrating the role of RNA, chromatin and non-coding RNA in alternative splicing regulation. Curr Opin Genet Dev. 2011;21(4):366–72. doi: 10.1016/j.gde.2011.03.004.PubMedGoogle Scholar
  59. 59.
    Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z, et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 2010;29(18):3082–93. doi: 10.1038/emboj.2010.199.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22(39):8031–41. doi: 10.1038/sj.onc.1206928.PubMedGoogle Scholar
  61. 61.
    Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39(6):925–38. doi: 10.1016/j.molcel.2010.08.011.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Lin R, Roychowdhury-Saha M, Black C, Watt AT, Marcusson EG, Freier SM, et al. Control of RNA processing by a large non-coding RNA over-expressed in carcinomas. FEBS Lett. 2011;585(4):671–6. doi: 10.1016/j.febslet.2011.01.030.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Tano K, Mizuno R, Okada T, Rakwal R, Shibato J, Masuo Y, et al. MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett. 2010;584(22):4575–80. doi: 10.1016/j.febslet.2010.10.008.PubMedGoogle Scholar
  64. 64.
    Anko ML, Muller-McNicoll M, Brandl H, Curk T, Gorup C, Henry I, et al. The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes. Genome Biol. 2012;13(3):R17. doi: 10.1186/gb-2012-13-3-r17.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Polymenidou M, Lagier-Tourenne C, Hutt KR, Huelga SC, Moran J, Liang TY, et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci. 2011;14(4):459–68. doi: 10.1038/nn.2779.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Sanford JR, Wang X, Mort M, Vanduyn N, Cooper DN, Mooney SD, et al. Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res. 2009;19(3):381–94. doi: 10.1101/gr.082503.108.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Schor IE, Lleres D, Risso GJ, Pawellek A, Ule J, Lamond AI, et al. Perturbation of chromatin structure globally affects localization and recruitment of splicing factors. PLoS One. 2012;7(11):e48084. doi: 10.1371/journal.pone.0048084.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Tollervey JR, Curk T, Rogelj B, Briese M, Cereda M, Kayikci M, et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci. 2011;14(4):452–8. doi: 10.1038/nn.2778.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Lin R, Maeda S, Liu C, Karin M, Edgington TS. A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene. 2007;26(6):851–8. doi: 10.1038/sj.onc.1209846.PubMedGoogle Scholar
  70. 70.
    Perez DS, Hoage TR, Pritchett JR, Ducharme-Smith AL, Halling ML, Ganapathiraju SC, et al. Long, abundantly expressed non-coding transcripts are altered in cancer. Hum Mol Genet. 2008;17(5):642–55. doi: 10.1093/hmg/ddm336.PubMedGoogle Scholar
  71. 71.
    Yamada K, Kano J, Tsunoda H, Yoshikawa H, Okubo C, Ishiyama T, et al. Phenotypic characterization of endometrial stromal sarcoma of the uterus. Cancer Sci. 2006;97(2):106–12. doi: 10.1111/j.1349-7006.2006.00147.x.PubMedGoogle Scholar
  72. 72.
    Schmidt LH, Spieker T, Koschmieder S, Schaffers S, Humberg J, Jungen D, et al. The long noncoding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol : Off Publ Int Assoc Study Lung Cancer. 2011;6(12):1984–92. doi: 10.1097/JTO.0b013e3182307eac.Google Scholar
  73. 73.
    Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X, et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013;9(3):e1003368. doi: 10.1371/journal.pgen.1003368.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Lavorgna G, Dahary D, Lehner B, Sorek R, Sanderson CM, Casari G. In search of antisense. Trends Biochem Sci. 2004;29(2):88–94. doi: 10.1016/j.tibs.2003.12.002.PubMedGoogle Scholar
  75. 75.
    Li K, Ramchandran R. Natural antisense transcript: a concomitant engagement with protein-coding transcript. Oncotarget. 2010;1(6):447–52.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Ling MH, Ban Y, Wen H, Wang SM, Ge SX. Conserved expression of natural antisense transcripts in mammals. BMC Genomics. 2013;14:243. doi: 10.1186/1471-2164-14-243.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Werner A. Biological functions of natural antisense transcripts. BMC Biol. 2013;11:31. doi: 10.1186/1741-7007-11-31.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Beltran M, Puig I, Pena C, Garcia JM, Alvarez AB, Pena R, et al. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev. 2008;22(6):756–69. doi: 10.1101/gad.455708.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Bertozzi D, Iurlaro R, Sordet O, Marinello J, Zaffaroni N, Capranico G. Characterization of novel antisense HIF-1alpha transcripts in human cancers. Cell Cycle (Georgetown, Tex). 2011;10(18):3189–97.Google Scholar
  80. 80.
    Cayre A, Rossignol F, Clottes E, Penault-Llorca F. aHIF but not HIF-1alpha transcript is a poor prognostic marker in human breast cancer. Breast Cancer Res : BCR. 2003;5(6):R223–30. doi: 10.1186/bcr652.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Rossignol F, Vache C, Clottes E. Natural antisense transcripts of hypoxia-inducible factor 1alpha are detected in different normal and tumour human tissues. Gene. 2002;299(1–2):135–40.PubMedGoogle Scholar
  82. 82.
    Fornace Jr AJ, Alamo Jr I, Hollander MC. DNA damage-inducible transcripts in mammalian cells. Proc Natl Acad Sci U S A. 1988;85(23):8800–4.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Hollander MC, Alamo I, Fornace Jr AJ. A novel DNA damage-inducible transcript, gadd7, inhibits cell growth, but lacks a protein product. Nucleic Acids Res. 1996;24(9):1589–93.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Jackman J, Alamo Jr I, Fornace Jr AJ. Genotoxic stress confers preferential and coordinate messenger RNA stability on the five gadd genes. Cancer Res. 1994;54(21):5656–62.PubMedGoogle Scholar
  85. 85.
    Liu X, Li D, Zhang W, Guo M, Zhan Q. Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. EMBO J. 2012;31(23):4415–27. doi: 10.1038/emboj.2012.292.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Kim YK, Furic L, Desgroseillers L, Maquat LE. Mammalian Staufen1 recruits Upf1 to specific mRNA 3′UTRs so as to elicit mRNA decay. Cell. 2005;120(2):195–208. doi: 10.1016/j.cell.2004.11.050.PubMedGoogle Scholar
  87. 87.
    Kim YK, Furic L, Parisien M, Major F, DesGroseillers L, Maquat LE. Staufen1 regulates diverse classes of mammalian transcripts. EMBO J. 2007;26(11):2670–81. doi: 10.1038/sj.emboj.7601712.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Gong C, Maquat LE. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature. 2011;470(7333):284–8. doi: 10.1038/nature09701.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Gong C, Maquat LE. “Alu” strious long ncRNAs and their role in shortening mRNA half-lives. Cell Cycle (Georgetown, Tex). 2011;10(12):1882–3.Google Scholar
  90. 90.
    Kretz M, Siprashvili Z, Chu C, Webster DE, Zehnder A, Qu K, et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature. 2013;493(7431):231–5. doi: 10.1038/nature11661.PubMedGoogle Scholar
  91. 91.
    Roy B, Jacobson A. The intimate relationships of mRNA decay and translation. Trends Genet : TIG. 2013;29(12):691–9. doi: 10.1016/j.tig.2013.09.002.PubMedGoogle Scholar
  92. 92.
    Aktas BH, Qiao Y, Ozdelen E, Schubert R, Sevinc S, Harbinski F, et al. Small-molecule targeting of translation initiation for cancer therapy. Oncotarget. 2013;4(10):1606–17.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Cohen N, Sharma M, Kentsis A, Perez JM, Strudwick S, Borden KL. PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA. EMBO J. 2001;20(16):4547–59. doi: 10.1093/emboj/20.16.4547.PubMedPubMedCentralGoogle Scholar
  94. 94.
    De Benedetti A, Graff JR. eIF-4E expression and its role in malignancies and metastases. Oncogene. 2004;23(18):3189–99. doi: 10.1038/sj.onc.1207545.PubMedGoogle Scholar
  95. 95.
    Graff JR, Zimmer SG. Translational control and metastatic progression: enhanced activity of the mRNA cap-binding protein eIF-4E selectively enhances translation of metastasis-related mRNAs. Clin Exp Metastasis. 2003;20(3):265–73.PubMedGoogle Scholar
  96. 96.
    Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142(3):409–19. doi: 10.1016/j.cell.2010.06.040.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Yoon JH, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S, et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell. 2012;47(4):648–55. doi: 10.1016/j.molcel.2012.06.027.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Wilusz CJ, Wilusz J. HuR and translation—the missing linc(RNA). Mol Cell. 2012;47(4):495–6. doi: 10.1016/j.molcel.2012.08.005.PubMedGoogle Scholar
  99. 99.
    Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature. 2012;491(7424):454–7. doi: 10.1038/nature11508.PubMedGoogle Scholar
  100. 100.
    Huarte M. LncRNAs have a say in protein translation. Cell Res. 2013;23(4):449–51. doi: 10.1038/cr.2012.169.PubMedGoogle Scholar
  101. 101.
    Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, et al. Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010;143(1):46–58. doi: 10.1016/j.cell.2010.09.001.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Gumireddy K, Li A, Yan J, Setoyama T, Johannes GJ, Orom UA, et al. Identification of a long non-coding RNA-associated RNP complex regulating metastasis at the translational step. EMBO J. 2013;32(20):2672–84. doi: 10.1038/emboj.2013.188.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21(6):354–61. doi: 10.1016/j.tcb.2011.04.001.PubMedGoogle Scholar
  104. 104.
    Yang F, Huo XS, Yuan SX, Zhang L, Zhou WP, Wang F, et al. Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell. 2013;49(6):1083–96. doi: 10.1016/j.molcel.2013.01.010.PubMedGoogle Scholar
  105. 105.
    Guo F, Li Y, Liu Y, Wang J, Li G. Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion. Acta Biochim Biophys Sin. 2010;42(3):224–9.PubMedGoogle Scholar
  106. 106.
    Zhai H, Fesler A, Schee K, Fodstad O, Flatmark K, Ju J. Clinical significance of long intergenic noncoding RNA-p21 in colorectal cancer. Clin Colorectal Cancer. 2013;12(4):261–6. doi: 10.1016/j.clcc.2013.06.003.PubMedGoogle Scholar
  107. 107.
    Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol. 2012;14(7):659–65. doi: 10.1038/ncb2521.PubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Xuefei Shi
    • 1
  • Ming Sun
    • 2
  • Ying Wu
    • 1
  • Yanwen Yao
    • 1
  • Hongbing Liu
    • 1
  • Guannan Wu
    • 1
  • Dongmei Yuan
    • 1
  • Yong Song
    • 1
  1. 1.Department of Respiratory Medicine, Jinling HospitalNanjing University School of MedicineNanjingChina
  2. 2.Department of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjingChina

Personalised recommendations