Tumor Biology

, Volume 36, Issue 6, pp 4535–4543 | Cite as

Combined therapy with CTL cells and oncolytic adenovirus expressing IL-15-induced enhanced antitumor activity

  • Yang Yan
  • Songyan Li
  • Tingting Jia
  • Xiaohui Du
  • Yingxin Xu
  • Yunshan Zhao
  • Li Li
  • Kai Liang
  • Wentao Liang
  • Huiwei Sun
  • Rong Li
Research Article

Abstract

Addition of immunoregulation factor to an oncolytic adenovirus being constructed is a developmental step in tumor gene therapy; however, cytokine IL-15 has not been frequently used as a potential cancer therapy agent. Here, we constructed an E2F-1 promoter oncolytic adenovirus based on type 5 adenovirus, which induces viral replication and proliferation in targeted tumor cells. We inserted the IL-15 gene into the E3 region of the model and found that human IL-15 expressing oncolytic adenovirus (Ad-E2F/IL15) shows a more intense antitumor effect than simple oncolytic viruses (Ad-E2F) do. Precisely because IL-15 can activate natural killer (NK) cells, CD8+T cells, and other immune cells, in antitumor therapy, Ad-E2F/IL15 was used in combination with cytotoxic T lymphocytes (CTL) to create a virus that can induce IL-15 gene expression while lysing tumors and stimulating the activity and function of adoptive immune cells. The therapeutic effect of this therapy is clearly stronger than that of a single application of oncolytic viruses or CTL, and hence, it could be a potential new tumor therapy.

Keywords

CTL cells IL-15 Oncolytic adenovirus 

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (61170123) and Natural Science Foundation of Hainan province (813226).

Conflict of interest

None

Supplementary material

13277_2015_3098_Fig6_ESM.gif (146 kb)
Figure S1

PCR identification of oncolytic adenovirus Ad-E2F1/IL15. A. All Ad-E2F/IL151-2 clones showed the same band as the PXC20-E2Fp plasmid, whereas PXC20 showed a band about 440 bp. B. E2Fp-F + R identified that Ad-E2F1/IL15 virus showed the same band with the PXC20-E2FP plasmid. C. IL15-F + R identified the IL-15 gene in the Ad-E2F1/IL15 virus. D. GT210 + GT211 identified the mCMV promoter in the virus. N: negative control; P1: PXC20 plasmid; P2: PXC20-E2Fp plasmid; P3: PPE3-hIL2SPIL15 plasmid; 1-2: 2 clones of the Ad-E2F1/IL15 virus; M: Mix DNA Ladder (GIF 146 kb) (GIF 146 kb)

13277_2015_3098_MOESM1_ESM.tif (220 kb)
High Resolution image (TIFF 220 kb)
13277_2015_3098_Fig7_ESM.gif (498 kb)
Figure S2

The phenotype of immune cells (DCs, and CTL cells) from 3 healthy donors was stained with the various antibodies discussed above. A. CD80, CD86, and CD83 expression in DC cells. B. CD3, CD4, CD8, and CD56 expression in CTL cells. (GIF 497 kb)

13277_2015_3098_Fig8_ESM.gif (492 kb)
Figure S2

The phenotype of immune cells (DCs, and CTL cells) from 3 healthy donors was stained with the various antibodies discussed above. A. CD80, CD86, and CD83 expression in DC cells. B. CD3, CD4, CD8, and CD56 expression in CTL cells. (GIF 497 kb)

13277_2015_3098_MOESM2_ESM.tif (1.7 mb)
High Resolution Image (TIFF 1692 kb)
13277_2015_3098_MOESM3_ESM.tif (1.6 mb)
High Resolution Image (TIFF 1641 kb)

References

  1. 1.
    Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol. 2012;30:658–70.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Prestwich RJ, Harrington KJ, Pandha HS, Vile RG, Melcher AA, Errington F. Oncolytic viruses: a novel form of immunotherapy. Expert Rev Anticancer Ther. 2008;8:1581–8.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Crompton AM, Kirn DH. From ONYX-015 to armed vaccinia viruses: the education and evolution of oncolytic virus development. Curr Cancer Drug Targets. 2007;7:133–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Choi IK, Yun CO. Recent developments in oncolytic adenovirus-based immunotherapeutic agents for use against metastatic cancers. Cancer Gene Ther. 2013;20:70–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Choi JW, Lee JS, Kim SW, Yun CO. Evolution of oncolytic adenovirus for cancer treatment. Adv Drug Deliv Rev. 2012;64:720–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Jakobisiak M, Golab J, Lasek W. Interleukin 15 as a promising candidate for tumor immunotherapy. Cytokine Growth Factor Rev. 2011;22:99–108.CrossRefPubMedGoogle Scholar
  7. 7.
    Ochoa MC, Mazzolini G, Hervas-Stubbs S, de Sanmamed MF, Berraondo P, Melero I. Interleukin-15 in gene therapy of cancer. Curr Gene Ther. 2013;13:15–30.CrossRefPubMedGoogle Scholar
  8. 8.
    Rubinstein MP, Kadima AN, Salem ML, Nguyen CL, Gillanders WE, Cole DJ. Systemic administration of IL-15 augments the antigen-specific primary CD8+ T cell response following vaccination with peptide-pulsed dendritic cells. J Immunol. 2002;169:4928–35.CrossRefPubMedGoogle Scholar
  9. 9.
    Davies E, Reid S, Medina MF, Lichty B, Ashkar AA. IL-15 has innate anti-tumor activity independent of NK and CD8 T cells. J Leukoc Biol. 2010;88:529–36.CrossRefPubMedGoogle Scholar
  10. 10.
    Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med. 2000;191:771–80.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lodolce JP, Boone DL, Chai S, Swain RE, Dassopoulos T, Trettin S, et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity. 1998;9:669–76.CrossRefPubMedGoogle Scholar
  12. 12.
    Marks-Konczalik J, Dubois S, Losi JM, Sabzevari H, Yamada N, Feigenbaum L, et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci U S A. 2000;97:11445–50.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yajima T, Nishimura H, Wajjwalku W, Harada M, Kuwano H, Yoshikai Y. Overexpression of interleukin-15 in vivo enhances antitumor activity against MHC class I-negative and -positive malignant melanoma through augmented NK activity and cytotoxic T-cell response. Int J Cancer J Int Cancer. 2002;99:573–8.CrossRefGoogle Scholar
  14. 14.
    Dubsky P, Saito H, Leogier M, Dantin C, Connolly JE, Banchereau J, et al. IL-15-induced human DC efficiently prime melanoma-specific naive CD8+ T cells to differentiate into CTL. Eur J Immunol. 2007;37:1678–90.CrossRefPubMedGoogle Scholar
  15. 15.
    King JW, Thomas S, Corsi F, Gao L, Dina R, Gillmore R, et al. IL15 can reverse the unresponsiveness of Wilms’ tumor antigen-specific CTL in patients with prostate cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2009;15:1145–54.CrossRefGoogle Scholar
  16. 16.
    Stephenson KB, Barra NG, Davies E, Ashkar AA, Lichty BD. Expressing human interleukin-15 from oncolytic vesicular stomatitis virus improves survival in a murine metastatic colon adenocarcinoma model through the enhancement of anti-tumor immunity. Cancer Gene Ther. 2012;19:238–46.CrossRefPubMedGoogle Scholar
  17. 17.
    Liu J, Wennier S, Reinhard M, Roy E, MacNeill A, McFadden G. Myxoma virus expressing interleukin-15 fails to cause lethal myxomatosis in European rabbits. J Virol. 2009;83:5933–8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Steel JC, Ramlogan CA, Yu P, Sakai Y, Forni G, Waldmann TA, et al. Interleukin-15 and its receptor augment dendritic cell vaccination against the neu oncogene through the induction of antibodies partially independent of CD4 help. Cancer Res. 2010;70:1072–81.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nguyen TL, Wilson MG, Hiscott J. Oncolytic viruses and histone deacetylase inhibitors—a multi-pronged strategy to target tumor cells. Cytokine Growth Factor Rev. 2010;21:153–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Fujiwara T, Kagawa S, Tazawa H. Synergistic interaction of telomerase-specific oncolytic virotherapy and chemotherapeutic agents for human cancer. Curr Pharm Biotechnol. 2012;13:1809–16.CrossRefPubMedGoogle Scholar
  21. 21.
    Jiang H, Gomez-Manzano C, Lang FF, Alemany R, Fueyo J. Oncolytic adenovirus: preclinical and clinical studies in patients with human malignant gliomas. Curr Gene Ther. 2009;9:422–7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Darcy PK, Neeson P, Yong CS, Kershaw MH. Manipulating immune cells for adoptive immunotherapy of cancer. Curr Opin Immunol. 2014;27C:46–52.CrossRefGoogle Scholar
  23. 23.
    Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8:299–308.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rosenberg SA. Cell transfer immunotherapy for metastatic solid cancer—what clinicians need to know. Nat Rev Clin Oncol. 2011;8:577–85.CrossRefPubMedGoogle Scholar
  25. 25.
    Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.CrossRefPubMedGoogle Scholar
  26. 26.
    Palmer DH, Midgley RS, Mirza N, Torr EE, Ahmed F, Steele JC, et al. A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology. 2009;49:124–32.CrossRefPubMedGoogle Scholar
  27. 27.
    Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E, et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci U S A. 2002;99:16168–73.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    June CH. Adoptive T, cell therapy for cancer in the clinic. J Clin Invest. 2007;117:1466–76.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yang Z, Zhang Q, Xu K, Shan J, Shen J, Liu L, et al. Combined therapy with cytokine-induced killer cells and oncolytic adenovirus expressing IL-12 induce enhanced antitumor activity in liver tumor model. PLoS ONE. 2012;7:e44802.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhang SN, Choi IK, Huang JH, Yoo JY, Choi KJ, Yun CO. Optimizing DC vaccination by combination with oncolytic adenovirus coexpressing IL-12 and GM-CSF. Mol Ther: J Am Soc Gene Ther. 2011;19:1558–68.CrossRefGoogle Scholar
  31. 31.
    Yan Y, Xu Y, Zhao Y, Li L, Sun P, Liu H, et al. Combination of E2F-1 promoter-regulated oncolytic adenovirus and cytokine-induced killer cells enhances the antitumor effects in an orthotopic rectal cancer model. Tumour Biol: J Int Soc OncoDev Biol Med. 2014;35:1113–22.CrossRefGoogle Scholar
  32. 32.
    Wu YM, Zhang KJ, Yue XT, Wang YQ, Yang Y, Li GC, et al. Enhancement of tumor cell death by combining cisplatin with an oncolytic adenovirus carrying MDA-7/IL-24. Acta Pharmacol Sin. 2009;30:467–77.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yu DC, Chen Y, Dilley J, Li Y, Embry M, Zhang H, et al. Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. Cancer Res. 2001;61:517–25.PubMedGoogle Scholar
  34. 34.
    Du X, Jin R, Ning N, Li L, Wang Q, Liang W, et al. In vivo distribution and antitumor effect of infused immune cells in a gastric cancer model. Oncol Rep. 2012;28:1743–9.PubMedGoogle Scholar
  35. 35.
    Sun P, Xu Y, Du X, Ning N, Sun H, Liang W, et al. An engineered three-dimensional gastric tumor culture model for evaluating the antitumor activity of immune cells in vitro. Oncol lett. 2013;5:489–94.PubMedGoogle Scholar
  36. 36.
    Du X, Wang X, Ning N, Xia S, Liu J, Liang W, et al. Dynamic tracing of immune cells in an orthotopic gastric carcinoma mouse model using near-infrared fluorescence live imaging. Exp Ther Med. 2012;4:221–5.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Mao CY, Hua HJ, Chen P, Yu DC, Cao J, Teng LS. Combined use of chemotherapeutics and oncolytic adenovirus in treatment of AFP-expressing hepatocellular carcinoma. Hepato-Biliary-Pancreat Dis Int: HBPD INT. 2009;8:282–7.Google Scholar
  38. 38.
    Zhang J, Ramesh N, Chen Y, Li Y, Dilley J, Working P, et al. Identification of human uroplakin II promoter and its use in the construction of CG8840, a urothelium-specific adenovirus variant that eliminates established bladder tumors in combination with docetaxel. Cancer Res. 2002;62:3743–50.PubMedGoogle Scholar
  39. 39.
    Ono HA, Davydova JG, Adachi Y, Takayama K, Barker SD, Reynolds PN, et al. Promoter-controlled infectivity-enhanced conditionally replicative adenoviral vectors for the treatment of gastric cancer. J Gastroenterol. 2005;40:31–42.CrossRefPubMedGoogle Scholar
  40. 40.
    Gurlevik E, Woller N, Struver N, Schache P, Kloos A, Manns MP, et al. Selectivity of oncolytic viral replication prevents antiviral immune response and toxicity, but does not improve antitumoral immunity. Mol Ther: J Am Soc Gene Ther. 2010;18:1972–82.CrossRefGoogle Scholar
  41. 41.
    Ramesh N, Ge Y, Ennist DL, Zhu M, Mina M, Ganesh S, et al. CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor—armed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2006;12:305–13.CrossRefGoogle Scholar
  42. 42.
    Kohno SI, Luo C, Nawa A, Fujimoto Y, Watanabe D, Goshima F, et al. Oncolytic virotherapy with an HSV amplicon vector expressing granulocyte-macrophage colony-stimulating factor using the replication-competent HSV type 1 mutant HF10 as a helper virus. Cancer Gene Ther. 2007;14:918–26.CrossRefPubMedGoogle Scholar
  43. 43.
    Cody JJ, Douglas JT. Armed replicating adenoviruses for cancer virotherapy. Cancer Gene Ther. 2009;16:473–88.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zacharatos P, Kotsinas A, Evangelou K, Karakaidos P, Vassiliou LV, Rezaei N, et al. Distinct expression patterns of the transcription factor E2F-1 in relation to tumour growth parameters in common human carcinomas. J Pathol. 2004;203:744–53.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Yang Yan
    • 1
  • Songyan Li
    • 1
  • Tingting Jia
    • 2
  • Xiaohui Du
    • 1
  • Yingxin Xu
    • 3
  • Yunshan Zhao
    • 3
  • Li Li
    • 3
  • Kai Liang
    • 3
  • Wentao Liang
    • 3
  • Huiwei Sun
    • 3
  • Rong Li
    • 1
  1. 1.General Surgery DepartmentChinese PLA General HospitalBeijingChina
  2. 2.Oral and Maxillofacial Surgery DepartmentChinese PLA General HospitalBeijingChina
  3. 3.Institute of General SurgeryChinese PLA General HospitalBeijingChina

Personalised recommendations