Skip to main content

Advertisement

Log in

RANK pathway in giant cell tumor of bone: pathogenesis and therapeutic aspects

  • Review
  • Published:
Tumor Biology

Abstract

Giant cell tumor is a relatively uncommon but painful tumor of bone, which can metastasize to the lungs. The RANK pathway is often reported to be involved in the pathogenesis of giant cell tumor of bone (GCTB). This pathway is a key signaling pathway of bone remodeling that plays a critical role in differentiation of precursors into multinucleated osteoclasts, and activation of osteoclasts leading to bone resorption. Dysregulation of RANK ligand (RANKL)-RANK-osteoprotegerin (OPG) signaling cascade induces the imbalance between bone formation and bone resorption, which leads to the changes in bone mass, increases osteoclast-mediated bone destruction, bone metastasis, and the progression of existing skeletal tumors. Recent evidences have shown that targeting the components of RANKL-RANK-OPG signaling pathway is a promising approach in the treatment of GCTB. This review study has focused on the association of RANKL-RANK-OPG pathway in the pathogenesis and progression of GCTB as well as discussed the possible therapeutic strategies by targeting this pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jaffe HL, Lichtenstein L, Partis RB. Giant cell tumour of bone: its pathological appearance, grading, supposed variants and treatment. Arch Path. 1940;30:993–1031.

    Google Scholar 

  2. Lehner B, Kunz P, Saehr H, Fellenberg J. Epigenetic silencing of genes and microRNAs within the imprinted Dlk1-Dio3 region at human chromosome 14.32 in giant cell tumor of bone. BMC Cancer. 2014;14:495.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Deng Z, Ding Y, Yang F, Ding Y, Niu X. Metachronous multicentric giant cell tumor of bone with retroperitoneal metastasis. Chin Med J (Engl). 2014;127:2713–5.

    Google Scholar 

  4. Huang L, Xu J, Wood DJ, Zheng MH. Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-kappaB in giant cell tumor of bone: possible involvement in tumor cell-induced osteoclast-like cell formation. Am J Pathol. 2000;156:761–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wülling M, Engels C, Jesse N, Werner M, Delling G, Kaiser E. The nature of giant cell tumor of bone. J Cancer Res Clin Oncol. 2001;127:467–74.

    Article  PubMed  Google Scholar 

  6. Mohamed A, Ishikawa K, Omi E, Honda K, Suzuki S, Sato T, et al. Giant cell tumor of the temporal bone invading into the pterygoid muscle through the temporomandibular joint. J Neurol Surg Rep. 2014;75:e136–40.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Uslu GH, Canyilmaz E, Yöney A, Aydin S, Sahbaz A, Sari A. Giant cell tumor of the occipital bone: a case report and review of the literature. Oncol Lett. 2014;8:151–4.

    PubMed  PubMed Central  Google Scholar 

  8. Sun S, Zhang Q, Zhao CS, Cai J. Long-term outcomes of ultrasonic scalpel treatment in giant cell tumor of long bones. Oncol Lett. 2014;8:145–50.

    PubMed  PubMed Central  Google Scholar 

  9. Moskovszky L, Szuhai K, Krenács T, Hogendoorn PC, Szendroi M, Benassi MS, et al. Genomic instability in giant cell tumor of bone. A study of 52 cases using DNA ploidy, relocalization FISH, and array-CGH analysis. Genes Chromosomes Cancer. 2009;48:468–79.

    Article  CAS  PubMed  Google Scholar 

  10. Moskovszky L, Dezsö K, Athanasou N, Szendröi M, Kopper L, Kliskey K, et al. Centrosome abnormalities in giant cell tumour of bone: possible association with chromosomal instability. Mod Pathol. 2010;23:359–66.

    Article  PubMed  Google Scholar 

  11. Skubitz KM. Giant cell tumor of bone: current treatment options. Curr Treat Options Oncol. 2014;15:507–18.

    Article  PubMed  Google Scholar 

  12. Hakozaki M, Tajino T, Yamada H, Hasegawa O, Tasaki K, Watanabe K, et al. Radiological and pathological characteristics of giant cell tumor of bone treated with denosumab. Diagn Pathol. 2014;7:9–111.

    Google Scholar 

  13. Teixeira LE, Vilela JC, Miranda RH, Gomes AH, Costa FA, de Faria VC. Giant cell tumors of bone: nonsurgical factors associated with local recurrence. Acta Orthop Traumatol Turc. 2014;48:136–40.

    Article  PubMed  Google Scholar 

  14. Boyce BF, Xing L. The RANK/RANKL/OPG pathway. Curr Osteoporos Rep. 2007;5:98–104.

    Article  PubMed  Google Scholar 

  15. Leibbrandt A, Penninger JM. RANK/RANKL: regulators of immune responses and bone physiology. Ann N Y Acad Sci. 2008;1143:123–50.

    Article  CAS  PubMed  Google Scholar 

  16. Jules J, Ashley JW, Feng X. Selective targeting of RANK signaling pathways as new therapeutic strategies for osteoporosis. Expert Opin Ther Targets. 2010;14:923–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dong SS, Liu XG, Chen Y, Guo Y, Wang L, Zhao J, et al. Association analyses of RANK/RANKL/OPG gene polymorphisms with femoral neck compression strength index variation in Caucasians. Calcif Tissue Int. 2009;85:104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dougall WC. Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANK/RANKL/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res. 2012;18:326–35.

    Article  CAS  PubMed  Google Scholar 

  19. Ross FP. RANKing the importance of measles virus in Paget’s disease. J Clin Invest. 2000;105:555–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raju R, Balakrishnan L, Nanjappa V, Bhattacharjee M, Getnet D, Muthusamy B, et al. A comprehensive manually curated reaction map of RANK/RANKL-signaling pathway. Database (Oxford). 2011;2011:bar021.

    Google Scholar 

  21. Kim HH, Shin HS, Kwak HJ, Ahn KY, Kim JH, Lee HJ, et al. RANKL regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. FASEB J. 2003;17:2163–5.

    CAS  PubMed  Google Scholar 

  22. Leibbrandt A, Penninger JM. RANK(L) as a key target for controlling bone loss. Adv Exp Med Biol. 2009;647:130–45.

    Article  CAS  PubMed  Google Scholar 

  23. Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007;9 Suppl 1:S1.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tanaka S. Signaling axis in osteoclast biology and therapeutic targeting in the RANK/RANKL/OPG system. Am J Nephrol. 2007;27:466–78.

    Article  PubMed  Google Scholar 

  25. Delgado-Calle J, Riancho JA. The role of DNA methylation in common skeletal disorders. Biology (Basel). 2012;1:698–713.

    CAS  Google Scholar 

  26. Dougall WC, Chaisson M. The RANK/RANKL/OPG triad in cancer-induced bone diseases. Cancer Metastasis Rev. 2006;25:541–9.

    Article  CAS  PubMed  Google Scholar 

  27. Kohli SS, Kohli VS. Role of RANKL-RANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications. Indian J Endocrinol Metab. 2011;15:175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lewin J, Thomas D. Denosumab: a new treatment option for giant cell tumor of bone. Drugs Today (Barc). 2013;49:693–700.

    Article  CAS  Google Scholar 

  29. Xu SF, Adams B, Yu XC, Xu M. Denosumab and giant cell tumour of bone—a review and future management considerations. Curr Oncol. 2013;20:e442–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roux S, Amazit L, Meduri G, Guiochon-Mantel A, Milgrom E, Mariette X. RANK (receptor activator of nuclear factor kappa B) and RANK ligand are expressed in giant cell tumors of bone. Am J Clin Pathol. 2002;117:210–6.

    Article  CAS  PubMed  Google Scholar 

  31. Atkins GJ, Bouralexis S, Haynes DR, Graves SE, Geary SM, Evdokiou A, et al. Osteoprotegerin inhibits osteoclast formation and bone resorbing activity in giant cell tumors of bone. Bone. 2001;28:370–7.

    Article  CAS  PubMed  Google Scholar 

  32. Lau YS, Sabokbar A, Gibbons CL, Giele H, Athanasou N. Phenotypic and molecular studies of giant-cell tumors of bone and soft tissue. Hum Pathol. 2005;36:945–54.

    Article  CAS  PubMed  Google Scholar 

  33. Ando K, Mori K, Rédini F, Heymann D. RANK/RANKL/OPG: key therapeutic target in bone oncology. Curr Drug Discov Technol. 2008;5:263–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Muresan MM, Olivier P, Leclère J, Sirveaux F, Brunaud L, Klein M, et al. Bone metastases from differentiated thyroid carcinoma. Endocr Relat Cancer. 2008;15:37–49.

    Article  CAS  PubMed  Google Scholar 

  35. Kim Y, Nizami S, Goto H, Lee FY. Modern interpretation of giant cell tumor of bone: predominantly osteoclastogenic stromal tumor. Clin Orthop Surg. 2012;4:107–16.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dufresne A, Derbel O, Cassier P, Vaz G, Decouvelaere AV, Blay JY. Giant-cell tumor of bone, anti-RANKL therapy. Bonekey Rep. 2012;1:149.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Federman N, Brien EW, Narasimhan V, Dry SM, Sodhi M, Chawla SP. Giant cell tumor of bone in childhood: clinical aspects and novel therapeutic targets. Paediatr Drugs. 2014;16:21–8.

    Article  PubMed  Google Scholar 

  38. Ang ES, Pavlos NJ, Chim SM, Feng HT, Scaife RM, Steer JH, et al. Paclitaxel inhibits osteoclast formation and bone resorption via influencing mitotic cell cycle arrest and RANKL-induced activation of NF-κB and ERK. J Cell Biochem. 2012;113:946–55.

    Article  CAS  PubMed  Google Scholar 

  39. Bahtiar A, Matsumoto T, Nakamura T, Akiyama M, Yogo K, Ishida-Kitagawa N, et al. Identification of a novel L-serine analog that suppresses osteoclastogenesis in vitro and bone turnover in vivo. J Biol Chem. 2009;284:34157–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tang T, Zhang G, Lau CP, Zheng LZ, Xie XH, Wang XL, et al. Effect of water-soluble P-chitosan and S-chitosan on human primary osteoblasts and giant cell tumor of bone stromal cells. Biomed Mater. 2011;6:015004.

    Article  CAS  PubMed  Google Scholar 

  41. Yu J, Choi S, Park ES, Shin B, Yu J, Lee SH, et al. D-chiro-inositol negatively regulates the formation of multinucleated osteoclasts by down-regulating NFATc1. J Clin Immunol. 2012;32:1360–71.

    Article  CAS  PubMed  Google Scholar 

  42. Wisutsitthiwong C, Buranaruk C, Pudhom K, Palaga T. The plant limonoid 7-oxo-deacetoxygedunin inhibits RANKL-induced osteoclastogenesis by suppressing activation of the NF-κB and MAPK pathways. Biochem Biophys Res Commun. 2011;415:361–6.

    Article  CAS  PubMed  Google Scholar 

  43. Szymczak J, Bohdanowicz-Pawlak A. Osteoprotegerin, RANKL, and bone turnover in primary hyperparathyroidism: the effect of parathyroidectomy and treatment with alendronate. Horm Metab Res. 2013;45:759–64.

    Article  CAS  PubMed  Google Scholar 

  44. Cheng YY, Huang L, Lee KM, Xu JK, Zheng MH, Kumta SM. Bisphosphonates induce apoptosis of stromal tumor cells in giant cell tumor of bone. Calcif Tissue Int. 2004;75:71–7.

    Article  CAS  PubMed  Google Scholar 

  45. Chang SS, Suratwala SJ, Jung KM, Doppelt JD, Zhang HZ, Blaine TA, et al. Bisphosphonates may reduce recurrence in giant cell tumor by inducing apoptosis. Clin Orthop Relat Res. 2004;426:103–9.

    Article  Google Scholar 

  46. Tse LF, Wong KC, Kumta SM, Huang L, Chow TC, Griffith JF. Bisphosphonates reduce local recurrence in extremity giant cell tumor of bone: a case–control study. Bone. 2008;42:68–73.

    Article  CAS  PubMed  Google Scholar 

  47. Abe K, Yoshimura Y, Deyama Y, Kikuiri T, Hasegawa T, Tei K, et al. Effects of bisphosphonates on osteoclastogenesis in RAW264.7 cells. Int J Mol Med. 2012;29:1007–15.

    CAS  PubMed  Google Scholar 

  48. Lau CP, Huang L, Tsui SK, Ng PK, Leung PY, Kumta SM. Pamidronate, farnesyl transferase, and geranylgeranyl transferase-I inhibitors affects cell proliferation, apoptosis, and OPG/RANKL mRNA expression in stromal cells of giant cell tumor of bone. J Orthop Res. 2011;29:403–13.

    Article  CAS  PubMed  Google Scholar 

  49. Reid IR, Cundy T. Osteonecrosis of the jaw. Skeletal Radiol. 2009;38:5–9.

    Article  PubMed  Google Scholar 

  50. Balke M, Campanacci L, Gebert C, Picci P, Gibbons M, Taylor R, et al. Bisphosphonate treatment of aggressive primary, recurrent and metastatic giant cell tumour of bone. BMC Cancer. 2010;10:462.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lipton A, Balakumaran A. Denosumab for the treatment of cancer therapy-induced bone loss and prevention of skeletal-related events in patients with solid tumors. Expert Rev Clin Pharmacol. 2012;5:359–71.

    Article  CAS  PubMed  Google Scholar 

  52. Branstetter DG, Nelson SD, Manivel JC, Blay JY, Chawla S, Thomas DM, et al. Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin Cancer Res. 2012;18:4415–24.

    Article  CAS  PubMed  Google Scholar 

  53. Thomas D, Henshaw R, Skubitz K, Chawla S, Staddon A, Blay JY, et al. Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study. Lancet Oncol. 2010;11:275–80.

    Article  CAS  PubMed  Google Scholar 

  54. Mak IW, Evaniew N, Popovic S, Tozer R, Ghert M. A translational study of the neoplastic cells of giant cell tumor of bone following neoadjuvant denosumab. J Bone Joint Surg Am. 2014;96:e127.

    Article  PubMed  Google Scholar 

  55. Pauli C, Fuchs B, Pfirrmann C, Bridge JA, Hofer S, Bode B. Response of an aggressive periosteal aneurysmal bone cyst (ABC) of the radius to denosumab therapy. World J Surg Oncol. 2014;12:17.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Agarwal A, Larsen BT, Buadu LD, Dunn J, Crawford R, Daniel J, et al. Denosumab chemotherapy for recurrent giant-cell tumor of bone: a case report of neoadjuvant use enabling complete surgical resection. Case Rep Oncol Med. 2013;2013:496351.

    PubMed  PubMed Central  Google Scholar 

  57. Akaike K, Suehara Y, Takagi T, Kaneko K, Saito T. An eggshell-like mineralized recurrent lesion in the popliteal region after treatment of giant cell tumor of the bone with denosumab. Skeletal Radiol. 2014;43:1767–72.

    Article  PubMed  Google Scholar 

  58. Mattei TA, Ramos E, Rehman AA, Shaw A, Patel SR, Mendel E. Sustained long-term complete regression of a giant cell tumor of the spine after treatment with denosumab. Spine J. 2014;14:e15–21.

    Article  PubMed  Google Scholar 

  59. Burkiewicz JS, Scarpace SL, Bruce SP. Denosumab in osteoporosis and oncology. Ann Pharmacother. 2009;43:1445–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang-hua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, PF., Tang, Jy. & Li, Kh. RANK pathway in giant cell tumor of bone: pathogenesis and therapeutic aspects. Tumor Biol. 36, 495–501 (2015). https://doi.org/10.1007/s13277-015-3094-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3094-y

Keywords

Navigation