Tumor Biology

, Volume 36, Issue 2, pp 495–501 | Cite as

RANK pathway in giant cell tumor of bone: pathogenesis and therapeutic aspects

  • Pan-Feng Wu
  • Ju-yu Tang
  • Kang-hua Li


Giant cell tumor is a relatively uncommon but painful tumor of bone, which can metastasize to the lungs. The RANK pathway is often reported to be involved in the pathogenesis of giant cell tumor of bone (GCTB). This pathway is a key signaling pathway of bone remodeling that plays a critical role in differentiation of precursors into multinucleated osteoclasts, and activation of osteoclasts leading to bone resorption. Dysregulation of RANK ligand (RANKL)-RANK-osteoprotegerin (OPG) signaling cascade induces the imbalance between bone formation and bone resorption, which leads to the changes in bone mass, increases osteoclast-mediated bone destruction, bone metastasis, and the progression of existing skeletal tumors. Recent evidences have shown that targeting the components of RANKL-RANK-OPG signaling pathway is a promising approach in the treatment of GCTB. This review study has focused on the association of RANKL-RANK-OPG pathway in the pathogenesis and progression of GCTB as well as discussed the possible therapeutic strategies by targeting this pathway.


RANK RANK ligand Osteoprotegerin Giant cell tumor of bone 


Conflicts of interest



  1. 1.
    Jaffe HL, Lichtenstein L, Partis RB. Giant cell tumour of bone: its pathological appearance, grading, supposed variants and treatment. Arch Path. 1940;30:993–1031.Google Scholar
  2. 2.
    Lehner B, Kunz P, Saehr H, Fellenberg J. Epigenetic silencing of genes and microRNAs within the imprinted Dlk1-Dio3 region at human chromosome 14.32 in giant cell tumor of bone. BMC Cancer. 2014;14:495.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Deng Z, Ding Y, Yang F, Ding Y, Niu X. Metachronous multicentric giant cell tumor of bone with retroperitoneal metastasis. Chin Med J (Engl). 2014;127:2713–5.Google Scholar
  4. 4.
    Huang L, Xu J, Wood DJ, Zheng MH. Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-kappaB in giant cell tumor of bone: possible involvement in tumor cell-induced osteoclast-like cell formation. Am J Pathol. 2000;156:761–7.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wülling M, Engels C, Jesse N, Werner M, Delling G, Kaiser E. The nature of giant cell tumor of bone. J Cancer Res Clin Oncol. 2001;127:467–74.CrossRefPubMedGoogle Scholar
  6. 6.
    Mohamed A, Ishikawa K, Omi E, Honda K, Suzuki S, Sato T, et al. Giant cell tumor of the temporal bone invading into the pterygoid muscle through the temporomandibular joint. J Neurol Surg Rep. 2014;75:e136–40.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Uslu GH, Canyilmaz E, Yöney A, Aydin S, Sahbaz A, Sari A. Giant cell tumor of the occipital bone: a case report and review of the literature. Oncol Lett. 2014;8:151–4.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Sun S, Zhang Q, Zhao CS, Cai J. Long-term outcomes of ultrasonic scalpel treatment in giant cell tumor of long bones. Oncol Lett. 2014;8:145–50.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Moskovszky L, Szuhai K, Krenács T, Hogendoorn PC, Szendroi M, Benassi MS, et al. Genomic instability in giant cell tumor of bone. A study of 52 cases using DNA ploidy, relocalization FISH, and array-CGH analysis. Genes Chromosomes Cancer. 2009;48:468–79.CrossRefPubMedGoogle Scholar
  10. 10.
    Moskovszky L, Dezsö K, Athanasou N, Szendröi M, Kopper L, Kliskey K, et al. Centrosome abnormalities in giant cell tumour of bone: possible association with chromosomal instability. Mod Pathol. 2010;23:359–66.CrossRefPubMedGoogle Scholar
  11. 11.
    Skubitz KM. Giant cell tumor of bone: current treatment options. Curr Treat Options Oncol. 2014;15:507–18.CrossRefPubMedGoogle Scholar
  12. 12.
    Hakozaki M, Tajino T, Yamada H, Hasegawa O, Tasaki K, Watanabe K, et al. Radiological and pathological characteristics of giant cell tumor of bone treated with denosumab. Diagn Pathol. 2014;7:9–111.Google Scholar
  13. 13.
    Teixeira LE, Vilela JC, Miranda RH, Gomes AH, Costa FA, de Faria VC. Giant cell tumors of bone: nonsurgical factors associated with local recurrence. Acta Orthop Traumatol Turc. 2014;48:136–40.CrossRefPubMedGoogle Scholar
  14. 14.
    Boyce BF, Xing L. The RANK/RANKL/OPG pathway. Curr Osteoporos Rep. 2007;5:98–104.CrossRefPubMedGoogle Scholar
  15. 15.
    Leibbrandt A, Penninger JM. RANK/RANKL: regulators of immune responses and bone physiology. Ann N Y Acad Sci. 2008;1143:123–50.CrossRefPubMedGoogle Scholar
  16. 16.
    Jules J, Ashley JW, Feng X. Selective targeting of RANK signaling pathways as new therapeutic strategies for osteoporosis. Expert Opin Ther Targets. 2010;14:923–34.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dong SS, Liu XG, Chen Y, Guo Y, Wang L, Zhao J, et al. Association analyses of RANK/RANKL/OPG gene polymorphisms with femoral neck compression strength index variation in Caucasians. Calcif Tissue Int. 2009;85:104–12.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dougall WC. Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANK/RANKL/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res. 2012;18:326–35.CrossRefPubMedGoogle Scholar
  19. 19.
    Ross FP. RANKing the importance of measles virus in Paget’s disease. J Clin Invest. 2000;105:555–8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Raju R, Balakrishnan L, Nanjappa V, Bhattacharjee M, Getnet D, Muthusamy B, et al. A comprehensive manually curated reaction map of RANK/RANKL-signaling pathway. Database (Oxford). 2011;2011:bar021.Google Scholar
  21. 21.
    Kim HH, Shin HS, Kwak HJ, Ahn KY, Kim JH, Lee HJ, et al. RANKL regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. FASEB J. 2003;17:2163–5.PubMedGoogle Scholar
  22. 22.
    Leibbrandt A, Penninger JM. RANK(L) as a key target for controlling bone loss. Adv Exp Med Biol. 2009;647:130–45.CrossRefPubMedGoogle Scholar
  23. 23.
    Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther. 2007;9 Suppl 1:S1.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tanaka S. Signaling axis in osteoclast biology and therapeutic targeting in the RANK/RANKL/OPG system. Am J Nephrol. 2007;27:466–78.CrossRefPubMedGoogle Scholar
  25. 25.
    Delgado-Calle J, Riancho JA. The role of DNA methylation in common skeletal disorders. Biology (Basel). 2012;1:698–713.Google Scholar
  26. 26.
    Dougall WC, Chaisson M. The RANK/RANKL/OPG triad in cancer-induced bone diseases. Cancer Metastasis Rev. 2006;25:541–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Kohli SS, Kohli VS. Role of RANKL-RANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications. Indian J Endocrinol Metab. 2011;15:175–81.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lewin J, Thomas D. Denosumab: a new treatment option for giant cell tumor of bone. Drugs Today (Barc). 2013;49:693–700.CrossRefGoogle Scholar
  29. 29.
    Xu SF, Adams B, Yu XC, Xu M. Denosumab and giant cell tumour of bone—a review and future management considerations. Curr Oncol. 2013;20:e442–7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Roux S, Amazit L, Meduri G, Guiochon-Mantel A, Milgrom E, Mariette X. RANK (receptor activator of nuclear factor kappa B) and RANK ligand are expressed in giant cell tumors of bone. Am J Clin Pathol. 2002;117:210–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Atkins GJ, Bouralexis S, Haynes DR, Graves SE, Geary SM, Evdokiou A, et al. Osteoprotegerin inhibits osteoclast formation and bone resorbing activity in giant cell tumors of bone. Bone. 2001;28:370–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Lau YS, Sabokbar A, Gibbons CL, Giele H, Athanasou N. Phenotypic and molecular studies of giant-cell tumors of bone and soft tissue. Hum Pathol. 2005;36:945–54.CrossRefPubMedGoogle Scholar
  33. 33.
    Ando K, Mori K, Rédini F, Heymann D. RANK/RANKL/OPG: key therapeutic target in bone oncology. Curr Drug Discov Technol. 2008;5:263–8.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Muresan MM, Olivier P, Leclère J, Sirveaux F, Brunaud L, Klein M, et al. Bone metastases from differentiated thyroid carcinoma. Endocr Relat Cancer. 2008;15:37–49.CrossRefPubMedGoogle Scholar
  35. 35.
    Kim Y, Nizami S, Goto H, Lee FY. Modern interpretation of giant cell tumor of bone: predominantly osteoclastogenic stromal tumor. Clin Orthop Surg. 2012;4:107–16.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Dufresne A, Derbel O, Cassier P, Vaz G, Decouvelaere AV, Blay JY. Giant-cell tumor of bone, anti-RANKL therapy. Bonekey Rep. 2012;1:149.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Federman N, Brien EW, Narasimhan V, Dry SM, Sodhi M, Chawla SP. Giant cell tumor of bone in childhood: clinical aspects and novel therapeutic targets. Paediatr Drugs. 2014;16:21–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Ang ES, Pavlos NJ, Chim SM, Feng HT, Scaife RM, Steer JH, et al. Paclitaxel inhibits osteoclast formation and bone resorption via influencing mitotic cell cycle arrest and RANKL-induced activation of NF-κB and ERK. J Cell Biochem. 2012;113:946–55.CrossRefPubMedGoogle Scholar
  39. 39.
    Bahtiar A, Matsumoto T, Nakamura T, Akiyama M, Yogo K, Ishida-Kitagawa N, et al. Identification of a novel L-serine analog that suppresses osteoclastogenesis in vitro and bone turnover in vivo. J Biol Chem. 2009;284:34157–66.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tang T, Zhang G, Lau CP, Zheng LZ, Xie XH, Wang XL, et al. Effect of water-soluble P-chitosan and S-chitosan on human primary osteoblasts and giant cell tumor of bone stromal cells. Biomed Mater. 2011;6:015004.CrossRefPubMedGoogle Scholar
  41. 41.
    Yu J, Choi S, Park ES, Shin B, Yu J, Lee SH, et al. D-chiro-inositol negatively regulates the formation of multinucleated osteoclasts by down-regulating NFATc1. J Clin Immunol. 2012;32:1360–71.CrossRefPubMedGoogle Scholar
  42. 42.
    Wisutsitthiwong C, Buranaruk C, Pudhom K, Palaga T. The plant limonoid 7-oxo-deacetoxygedunin inhibits RANKL-induced osteoclastogenesis by suppressing activation of the NF-κB and MAPK pathways. Biochem Biophys Res Commun. 2011;415:361–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Szymczak J, Bohdanowicz-Pawlak A. Osteoprotegerin, RANKL, and bone turnover in primary hyperparathyroidism: the effect of parathyroidectomy and treatment with alendronate. Horm Metab Res. 2013;45:759–64.CrossRefPubMedGoogle Scholar
  44. 44.
    Cheng YY, Huang L, Lee KM, Xu JK, Zheng MH, Kumta SM. Bisphosphonates induce apoptosis of stromal tumor cells in giant cell tumor of bone. Calcif Tissue Int. 2004;75:71–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Chang SS, Suratwala SJ, Jung KM, Doppelt JD, Zhang HZ, Blaine TA, et al. Bisphosphonates may reduce recurrence in giant cell tumor by inducing apoptosis. Clin Orthop Relat Res. 2004;426:103–9.CrossRefGoogle Scholar
  46. 46.
    Tse LF, Wong KC, Kumta SM, Huang L, Chow TC, Griffith JF. Bisphosphonates reduce local recurrence in extremity giant cell tumor of bone: a case–control study. Bone. 2008;42:68–73.CrossRefPubMedGoogle Scholar
  47. 47.
    Abe K, Yoshimura Y, Deyama Y, Kikuiri T, Hasegawa T, Tei K, et al. Effects of bisphosphonates on osteoclastogenesis in RAW264.7 cells. Int J Mol Med. 2012;29:1007–15.PubMedGoogle Scholar
  48. 48.
    Lau CP, Huang L, Tsui SK, Ng PK, Leung PY, Kumta SM. Pamidronate, farnesyl transferase, and geranylgeranyl transferase-I inhibitors affects cell proliferation, apoptosis, and OPG/RANKL mRNA expression in stromal cells of giant cell tumor of bone. J Orthop Res. 2011;29:403–13.CrossRefPubMedGoogle Scholar
  49. 49.
    Reid IR, Cundy T. Osteonecrosis of the jaw. Skeletal Radiol. 2009;38:5–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Balke M, Campanacci L, Gebert C, Picci P, Gibbons M, Taylor R, et al. Bisphosphonate treatment of aggressive primary, recurrent and metastatic giant cell tumour of bone. BMC Cancer. 2010;10:462.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lipton A, Balakumaran A. Denosumab for the treatment of cancer therapy-induced bone loss and prevention of skeletal-related events in patients with solid tumors. Expert Rev Clin Pharmacol. 2012;5:359–71.CrossRefPubMedGoogle Scholar
  52. 52.
    Branstetter DG, Nelson SD, Manivel JC, Blay JY, Chawla S, Thomas DM, et al. Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin Cancer Res. 2012;18:4415–24.CrossRefPubMedGoogle Scholar
  53. 53.
    Thomas D, Henshaw R, Skubitz K, Chawla S, Staddon A, Blay JY, et al. Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study. Lancet Oncol. 2010;11:275–80.CrossRefPubMedGoogle Scholar
  54. 54.
    Mak IW, Evaniew N, Popovic S, Tozer R, Ghert M. A translational study of the neoplastic cells of giant cell tumor of bone following neoadjuvant denosumab. J Bone Joint Surg Am. 2014;96:e127.CrossRefPubMedGoogle Scholar
  55. 55.
    Pauli C, Fuchs B, Pfirrmann C, Bridge JA, Hofer S, Bode B. Response of an aggressive periosteal aneurysmal bone cyst (ABC) of the radius to denosumab therapy. World J Surg Oncol. 2014;12:17.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Agarwal A, Larsen BT, Buadu LD, Dunn J, Crawford R, Daniel J, et al. Denosumab chemotherapy for recurrent giant-cell tumor of bone: a case report of neoadjuvant use enabling complete surgical resection. Case Rep Oncol Med. 2013;2013:496351.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Akaike K, Suehara Y, Takagi T, Kaneko K, Saito T. An eggshell-like mineralized recurrent lesion in the popliteal region after treatment of giant cell tumor of the bone with denosumab. Skeletal Radiol. 2014;43:1767–72.CrossRefPubMedGoogle Scholar
  58. 58.
    Mattei TA, Ramos E, Rehman AA, Shaw A, Patel SR, Mendel E. Sustained long-term complete regression of a giant cell tumor of the spine after treatment with denosumab. Spine J. 2014;14:e15–21.CrossRefPubMedGoogle Scholar
  59. 59.
    Burkiewicz JS, Scarpace SL, Bruce SP. Denosumab in osteoporosis and oncology. Ann Pharmacother. 2009;43:1445–55.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Orthopaedics, Xiangya HospitalCentral South UniversityChangshaChina

Personalised recommendations