Advertisement

Tumor Biology

, Volume 36, Issue 2, pp 479–488 | Cite as

Competing endogenous RNA interplay in cancer: mechanism, methodology, and perspectives

Review

Abstract

Competing endogenous RNAs (ceRNAs) refer to RNA transcripts, such as mRNAs, non-coding RNAs, pseudogene transcripts, and circular RNAs, that can regulate each other by competing for the same pool of miRNAs. ceRNAs involve in the pathogenesis of several common cancers such as prostate cancer, liver cancer, breast cancer, lung cancer, gastric cancer, endometrial cancer, and so on. ceRNA activity is determined by factors such as miRNA/ceRNA abundance, ceRNAs binding affinity to miRNAs, RNA editing, and RNA-binding proteins. The alteration of any of these factors may lead to ceRNA network imbalance and thus contribute to cancer initiation and progression. There are generally three steps in ceRNA research conductions: ceRNA prediction, ceRNA validation, and ceRNA functional investigation. Deciphering ceRNA interplay in cancer provides new insight into cancer pathogenesis and opportunities for therapy exploration. In this review, we try to give readers a concise and reliable illustration on the mechanism, functions, research approaches, and perspective of ceRNA in cancer.

Keywords

ceRNA Cancer miRNA miRNA response elements 

Notes

Conflicts of interest

None

References

  1. 1.
    ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.CrossRefGoogle Scholar
  2. 2.
    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465:1033–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tay Y, Kats L, Salmena L, Weiss D, Tan SM, Ala U, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell. 2011;147:344–57.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146:353–8.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Li N, Flynt AS, Kim HR, Solnica-Krezel L, Patton JG. Dispatched Homolog 2 is targeted by miR-214 through a combination of three weak microRNA recognition sites. Nucleic Acids Res. 2008;36(13):4277–85.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoS Biol. 2005;3(3):e85.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wang B, Love TM, Call ME, Doench JG, Novina CD. Recapitulation of short RNA-directed translational gene silencing in vitro. Mol Cell. 2006;22:553–60.CrossRefPubMedGoogle Scholar
  9. 9.
    Chi SW, Zang JB, Mele A, Darnell RB. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature. 2009;460:479–86.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Qiu MT, Hu JW, Yin R, Xu L. Long noncoding RNA: an emerging paradigm of cancer research. Tumour Biol. 2013;34(2):613–20.CrossRefPubMedGoogle Scholar
  11. 11.
    Li CH, Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol. 2013;45(8):1895–910.CrossRefPubMedGoogle Scholar
  12. 12.
    Deng K, Guo X, Wang H, Xia J. The lncRNA-MYC regulatory network in cancer. Tumour Biol. 2014;35(10):9497–503.CrossRefPubMedGoogle Scholar
  13. 13.
    Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N. Requirement for Xist in X chromosome inactivation. Nature. 1996;379:131–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang J, Liu X, Wu H, Ni P, Gu Z, Qiao Y, et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 2010;38:5366–83.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Liu XH, Sun M, Nie FQ, Ge YB, Zhang EB, Yin DD, et al. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer. 2014;13:92.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhou X, Gao Q, Wang J, Zhang X, Liu K, Duan Z. Linc-RNA-RoR acts as a "sponge" against mediation of the differentiation of endometrial cancer stem cells by microRNA-145. Gynecol Oncol. 2014;133:333–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Xiao-Jie L, Ai-Mei G, Li-Juan J, Jiang X. Pseudogene in cancer: real functions and promising signature. J Med Genet. 2015;52(1):17–24.CrossRefPubMedGoogle Scholar
  18. 18.
    Yu G, Yao W, Gumireddy K, Li A, Wang J, Xiao W, et al. Pseudogene PTENP1 Functions as a Competing Endogenous RNA to Suppress Clear-Cell Renal Cell Carcinoma Progression. Mol Cancer Ther. 2014;13(12):3086–97.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993;73:1019–30.CrossRefPubMedGoogle Scholar
  20. 20.
    Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495(7441):384–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Fang L, Du WW, Yang X, Chen K, Ghanekar A, Levy G, et al. Versican 3ʹ-untranslated region (3ʹ-UTR) functions as a ceRNA in inducing the development of hepatocellular carcinoma by regulating miRNA activity. FASEB J. 2013;27:907–19.CrossRefPubMedGoogle Scholar
  22. 22.
    Wang L, Guo ZY, Zhang R, Xin B, Chen R, Zhao J, et al. Pseudogene OCT4-pg4 functions as a natural micro RNA sponge to regulate OCT4 expression by competing for miR-145 in hepatocellular carcinoma. Carcinogenesis. 2013;34:1773–81.CrossRefPubMedGoogle Scholar
  23. 23.
    Lee DY, Jeyapalan Z, Fang L, Yang J, Zhang Y, Yee AY, et al. Expression of versican 3ʹ-untranslated region modulates endogenous microRNA functions. PLoS ONE. 2010;5:e13599.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jeyapalan Z, Deng Z, Shatseva T, Fang L, He C, Yang BB. Expression of CD44 30-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis. Nucleic Acids Res. 2011;39:3026–41.CrossRefPubMedGoogle Scholar
  25. 25.
    Rutnam ZJ, Yang BB. The non-coding 3' UTR of CD44 induces metastasis by regulating extracellular matrix functions. J Cell Sci. 2012;125:2075–85.CrossRefPubMedGoogle Scholar
  26. 26.
    Yang J, Li T, Gao C, Lv X, Liu K, Song H, et al. FOXO1 3'UTR functions as a ceRNA in repressing the metastases of breast cancer cells via regulating miRNA activity. FEBS Lett. 2014;588:3218–24.CrossRefPubMedGoogle Scholar
  27. 27.
    Kumar MS, Armenteros-Monterroso E, East P, Chakravorty P, Matthews N, Winslow MM, et al. HMGA2 functions as a competing endogenous RNA to promote lung cancer progression. Nature. 2014;505:212–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Liu K, Guo L, Guo Y, Zhou B, Li T, Yang H, et al. AEG-1 3'-untranslated region functions as a ceRNA in inducing epithelial-mesenchymal transition of human non-small cell lung cancer by regulating miR-30a activity. Eur J Cell Biol. 2015;94(1):22–31.CrossRefPubMedGoogle Scholar
  29. 29.
    Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG, et al. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell. 2011;147:382–95.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Sumazin P, Yang X, Chiu HS, Chung WJ, Iyer A, Llobet-Navas D, et al. An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell. 2011;147:370–81.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ebert MS, Sharp PA. Emerging roles for natural microRNA sponges. Curr Biol. 2010;20:R858–61.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mukherji S, Ebert MS, Zheng GXY, Tsang JS, Sharp PA, van Oudenaarden A. MicroRNAs can generate thresholds in target gene expression. Nat Genet. 2011;43:854–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Figliuzzi M, Marinari E, De Martino A. MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. Biophys J. 2013;104:1203–13.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pal S, Gupta R, Davuluri RV. Alternative transcription and alternative splicing in cancer. Pharmacol Ther. 2012;136:283–94.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhou X, Li X, Cheng Y, Wu W, Xie Z, Xi Q. BCLAF1 and its splicing regulator SRSF10 regulate the tumorigenic potential of colon cancer cells. Nat Commun. 2014. doi: 10.1038/ncomms5581.Google Scholar
  36. 36.
    Xu Y, Gao XD, Lee JH, Huang H, Tan H, Ahn J, et al. Cell type-restricted activity of hnRNPM promotes breast cancer metastasis via regulatingalternative splicing. Genes Dev. 2014;28:1191–203.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Venables JP, Klinck R, Koh C, Gervais-Bird J, Bramard A, Inkel L, et al. Cancer-associated regulation of alternative splicing. Nature Struct Mol Biol. 2009;16:670–6.CrossRefGoogle Scholar
  38. 38.
    Mayr C, Bartel DP. Widespread shortening of 3ʹUTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138:673–84.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lembo A, Di Cunto F, Provero P. Shortening of 3ʹUTRs correlates with poor prognosis in breast and lung cancer. PLoS ONE. 2012;7:e31129.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lau CC, Sun T, Ching AK, He M, Li JW, Wong AM, et al. Viral-human chimeric transcript predisposes risk to liver cancer development and progression. Cancer Cell. 2014;25:335–49.CrossRefPubMedGoogle Scholar
  41. 41.
    Park K, Dalton JT, Narayanan R, Barbieri CE, Hancock ML, Bostwick DG, et al. TMPRSS2:ERG gene fusion predicts subsequent detection of prostate cancer in patients with high-grade prostatic intraepithelial neoplasia. J Clin Oncol. 2014;32:206–11.CrossRefPubMedGoogle Scholar
  42. 42.
    Li F, Feng Y, Fang R, Fang Z, Xia J, Han X, et al. Viral-human chimeric transcript predisposes risk to liver cancer development and progression. Cell Res. 2012;22:928–31.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Almeida MI, Reis RM, Calin GA. Decoy activity through microRNAs: the therapeutic implications. Expert Opin Biol Ther. 2012;12:1153–9.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sabarinathan R, Wenzel A, Novotny P, Tang X, Kalari KR, Gorodkin J. Transcriptome-wide analysis of UTRs in non-small cell lung cancer reveals cancer-related genes with SNV-induced changes on RNA secondary structure and miRNA target sites. PLoS One. 2014;9(1):e82699.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Maas S. Posttranscriptional recoding by RNA editing. Adv Protein Chem Struct Biol. 2012;86:193–224.CrossRefPubMedGoogle Scholar
  46. 46.
    Kawahara Y, Megraw M, Kreider E, Iizasa H, Valente L, Hatzigeorgiou AG, et al. Frequency and fate of microRNA editing in human brain. Nucleic Acids Res. 2008;36:5270–80.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Levanon EY, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nature Biotechnol. 2004;22:1001–5.CrossRefGoogle Scholar
  48. 48.
    Young LE, Moore AE, Sokol L, Meisner-Kober N, Dixon DA. The mRNA stability factor HuR inhibits microRNA-16 targeting of COX-2. Mol Cancer Res. 2012;10:167–80.CrossRefPubMedGoogle Scholar
  49. 49.
    Epis MR, Barker A, Giles KM, Beveridge DJ, Leedman PJ. The RNA-binding protein HuR opposes the repression of ERBB-2 gene expression by microRNA miR-331–3p in prostate cancer cells. J Biol Chem. 2011;286:41442–54.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, Gorospe M. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev. 2009;23:1743–8.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ala U, Karreth FA, Bosia C, Pagnani A, Taulli R, Léopold V, et al. Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc Natl Acad Sci U S A. 2013;110:7154–9.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–7. doi: 10.1093/nar/gkt1248.CrossRefPubMedGoogle Scholar
  53. 53.
    Sarver AL, Subramanian S. Competing endogenous RNA database. Bioinformation. 2012;8:731–3.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126:1203–17.CrossRefPubMedGoogle Scholar
  55. 55.
    Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell. 2010;141:129–41.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Thomson DW, Bracken CP, Goodall GJ. Experimental strategies for microRNA target identification. Nucleic Acids Res. 2011;39:6845–53.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Yoon JH, Srikantan S, Gorospe M. MS2-TRAP (MS2-tagged RNA affinity purification): tagging RNA to identify associated miRNAs. Methods. 2012;58:81–7.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Schug J, McKenna LB, Walton G, Hand N, Mukherjee S, Essuman K, et al. Dynamic recruitment of microRNAs to their mRNA targets in the regenerating liver. BMC Genomics. 2013. doi: 10.1186/1471-2164-14-264.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19:141–57.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE. 2012;7:e30733. doi: 10.1371/journal.pone.0030733.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Taulli R, Loretelli C, Pandolfi PP. From pseudo-ceRNAs to circ-ceRNAs: a tale of cross-talk and competition. Nature Struct Mol Biol. 2013;20:541–3.CrossRefGoogle Scholar
  63. 63.
    Wilusz JE, Sharp PA. Molecular biology. A circuitous route to noncoding RNA. Science. 2013;340:440–1.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Tollervey D. Molecular biology: RNA lost in translation. Nature. 2006;440:425–6.CrossRefPubMedGoogle Scholar
  65. 65.
    Dey N, Das F, Ghosh-Choudhury N, Mandal CC, Parekh DJ, Block K, et al. microRNA-21 governs TORC1 activation in renal cancer cell proliferation and invasion. PLoS One. 2012;7:e37366. doi: 10.1371/journal.pone.0037366.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Xu G, Zhang Y, Wei J, Jia W, Ge Z, Zhang Z, et al. MicroRNA-21 promotes hepatocellular carcinoma HepG2 cell proliferation through repression of mitogen activated protein kinase-kinase 3. BMC Cancer. 2013. doi: 10.1186/1471-2407-13-469.Google Scholar
  67. 67.
    Mandal CC, Ghosh-Choudhury T, Dey N, Choudhury GG, Ghosh-Choudhury N. miR-21 is targeted by omega-3 polyunsaturated fatty acid to regulate breast tumor CSF-1 expression. Carcinogenesis. 2012;33:1897–908.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Lin J, Teo S, Lam DH, Jeyaseelan K, Wang S. MicroRNA-10b pleiotropically regulates invasion, angiogenicity and apoptosis of tumor cells resembling mesenchymal subtype of glioblastoma multiforme. Cell Death Dis. 2012. doi: 10.1038/cddis.2012.134.Google Scholar
  69. 69.
    Li Q, Li X, Guo Z, Xu F, Xia J, Liu Z, et al. MicroRNA-574-5p was pivotal for TLR9 signaling enhanced tumor progression via down-regulating checkpoint suppressor in human lung cancer. PLoS One. 2012;7:e48278.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Lin CW, Chang YL, Chang YC, Lin JC, Chen CC, Pan SH, et al. MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS. Nat Commun. 2013. doi: 10.1038/ncomms2876.Google Scholar
  71. 71.
    Liu Y, Cui H, Wang W, Li L, Wang Z, Yang S, et al. Construction of circular miRNA sponges targeting miR-21 or miR-221 and demonstration of their excellent anticancer effects on malignant melanoma cells. Int J Biochem Cell Biol. 2013;45:2643–50.CrossRefPubMedGoogle Scholar
  72. 72.
    Dylla L, Jedlicka P. Growth-promoting role of the miR-106a–363 cluster in Ewing sarcoma. PLoS One. 2013;8:e63032.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  1. 1.Department of Cardiothoracic Surgery, Shiyan Taihe HospitalHubei University of MedicineShiyan CityChina
  2. 2.Cervical disease clinicJiangsu Huai’an Maternity and Children HospitalHuai’anChina
  3. 3.Department of RehabilitationThe Second People’s Hospital of Huai’anHuai’anChina
  4. 4.Department of Gastroenterology, Shanghai East HospitalTongji University, School of MedicineShanghaiChina

Personalised recommendations