Tumor Biology

, Volume 36, Issue 6, pp 4501–4507 | Cite as

Circulating miR-375 and miR-199a-3p as potential biomarkers for the diagnosis of hepatocellular carcinoma

  • Jian Yin
  • Peng Hou
  • Zhiqiang Wu
  • Tao Wang
  • Yanxiao Nie
Research Article

Abstract

Aiming to find novel non-invasive biomarkers with high accuracy for the detention of early-stage hepatocellular carcinoma (HCC), we examined the predictive power of two microRNAs (miR; miR-375 and miR-199a-3p) as potential biomarkers in early-stage HCC. A total of 234 serum samples (78 samples from HCC patients, 156 samples from healthy controls) were collected. We measured the levels of the two mature microRNAs (miRNAs) (miR-375 and miR-199a-3p) with probe-based stem-loop quantitative reverse-transcriptase PCR (RT-qPCR) in all subjects. In addition, the correlation between the expression levels of two miRs and clinicopathological factors was explored. Receiver operating characteristic curve (ROC) analyses revealed that the two serum miRs could be promising biomarkers for HCC, with relatively high area under the curve (AUC) values as follows: miR-375, 0. 637 with 95 % confidence interval (CI) of 0.560–0.741; miR-199a-3p, 0. 883 with 95 % CI of 0.827–0.938. Stratified analyses indicated that circulating miR-199a-3p showed better predictive value in patients with long-term drinking. Our data suggested that circulating miR-375 and miR-199a-3p could be a novel serum biomarker for HCC. Nevertheless, further validating and improving study with larger sample should be conducted to confirm our results.

Keywords

Hepatocellular carcinoma (HCC) Biomarker miR-375 miR-199a-3p 

Notes

Conflicts of interest

None.

Funds

None.

References

  1. 1.
    Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology. 2004;127:S5–S16.CrossRefPubMedGoogle Scholar
  2. 2.
    Song P, Gao J, Inagaki Y, Kokudo N, Hasegawa K, et al. Biomarkers: evaluation of screening for and early diagnosis of hepatocellular carcinoma in Japan and china. Liver Cancer. 2013;2:31–9.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Asia-Pacific Working Party on Prevention of Hepatocellular C Prevention of hepatocellular carcinoma in the Asia-Pacific region: consensus statements. J Gastroenterol Hepatol 2010:25:657-663.Google Scholar
  4. 4.
    Yuen MF, Hou JL, Chutaputti A, Asia Pacific Working Party on Prevention of Hepatocellular Carcinoma. Hepatocellular carcinoma in the Asia pacific region. J Gastroenterol Hepatol. 2009;24:346–53.CrossRefPubMedGoogle Scholar
  5. 5.
    Hu B, Tian X, Sun J, Meng X. Evaluation of individual and combined applications of serum biomarkers for diagnosis of hepatocellular carcinoma: a meta-analysis. Int J Mol Sci. 2013;14:23559–80.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Harada N, Hiramatsu N, Oze T, Morishita N, Yamada R, et al. Risk factors for hepatocellular carcinoma in hepatitis C patients with normal alanine aminotransferase treated with pegylated interferon and ribavirin. J Viral Hepat. 2014;21:357–65.CrossRefPubMedGoogle Scholar
  7. 7.
    Bao YX, Cao Q, Yang Y, Mao R, Xiao L, et al. Expression and prognostic significance of golgiglycoprotein73 (GP73) with epithelial-mesenchymal transition (EMT) related molecules in hepatocellular carcinoma (HCC). Diagn Pathol. 2013;8:197.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhu K, Dai Z, Zhou J. Biomarkers for hepatocellular carcinoma: progression in early diagnosis, prognosis, and personalized therapy. Biomarker Res. 2013;1:10.CrossRefGoogle Scholar
  9. 9.
    Bruix J, Sherman M, American Association for the Study of Liver Disease. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53:1020–2.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Han LL, Nan HC, Tian T, Guo H, Hu TH, et al. Expression and significance of the novel tumor-suppressor gene SMG-1 in hepatocellular carcinoma. Oncol Rep. 2014;31:2569–78.PubMedGoogle Scholar
  11. 11.
    Chen MH, Jan YH, Chang PM, Chuang YJ, Yeh YC, et al. Expression of GOLM1 correlates with prognosis in human hepatocellular carcinoma. Ann Surg Oncol. 2013;20 Suppl 3:S616–624.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang Y, Zhang JX, Huang LL, He LJ, Liao YJ, et al. Low expression of BARX2 in human primary hepatocellular carcinoma correlates with metastasis and predicts poor prognosis. Hepatol Res: Off J Japan Soc Hepatol. 2014.Google Scholar
  13. 13.
    Bostjancic E, Zidar N, Glavac D. MicroRNA microarray expression profiling in human myocardial infarction. Dis Markers. 2009;27:255–68.CrossRefPubMedGoogle Scholar
  14. 14.
    Leivonen SK, Makela R, Ostling P, Kohonen P, Haapa-Paananen S, et al. Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene. 2009;28:3926–36.CrossRefPubMedGoogle Scholar
  15. 15.
    Cho W, Ziogas DE, Katsios C, Roukos DH. Emerging personalized oncology: sequencing and systems strategies. Future Oncol. 2012;8:637–41.CrossRefPubMedGoogle Scholar
  16. 16.
    Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet. 2010;11:685–96.CrossRefPubMedGoogle Scholar
  17. 17.
    Kumar V, Kato N, Urabe Y, Takahashi A, Muroyama R, et al. Genome-wide association study identifies a susceptibility locus for HCV-induced hepatocellular carcinoma. Nat Genet. 2011;43:455–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Krawczyk M, Mullenbach R, Weber SN, Zimmer V, Lammert F. Genome-wide association studies and genetic risk assessment of liver diseases. Nat Rev Gastroenterol Hepatol. 2010;7:669–81.CrossRefPubMedGoogle Scholar
  19. 19.
    Bai DS, Dai Z, Zhou J, Liu YK, Qiu SJ, et al. Capn4 overexpression underlies tumor invasion and metastasis after liver transplantation for hepatocellular carcinoma. Hepatology. 2009;49:460–70.CrossRefPubMedGoogle Scholar
  20. 20.
    Dai Z, Zhou J, Qiu SJ, Liu YK, Fan J. Lectin-based glycoproteomics to explore and analyze hepatocellular carcinoma-related glycoprotein markers. Electrophoresis. 2009;30:2957–66.CrossRefPubMedGoogle Scholar
  21. 21.
    Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, et al. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology. 2008;47:1223–32.CrossRefPubMedGoogle Scholar
  22. 22.
    Budhu A, Ji J, Wang XW. The clinical potential of microRNAs. J Hematol Oncol. 2010;3:37.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhao J, Lu Q, Zhu J, Fu J, Chen YX. Prognostic value of miR-96 in patients with acute myeloid leukemia. Diagn Pathol. 2014;9:76.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Liu F, Xiong Y, Zhao Y, Tao L, Zhang Z, et al. Identification of aberrant microRNA expression pattern in pediatric gliomas by microarray. Diagn Pathol. 2013;8:158.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Wang W, Li F, Zhang Y, Tu Y, Yang Q, et al. Reduced expression of miR-22 in gastric cancer is related to clinicopathologic characteristics or patient prognosis. Diagn Pathol. 2013;8:102.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Giray BG, Emekdas G, Tezcan S, Ulger M, Serin MS, et al. Profiles of serum microRNAs; miR-125b-5p and miR223-3p serve as novel biomarkers for HBV-positive hepatocellular carcinoma. Mol Biol Rep. 2014;41:4513–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Qi J, Wang J, Katayama H, Sen S, Liu SM. Circulating microRNAs (cmiRNAs) as novel potential biomarkers for hepatocellular carcinoma. Neoplasma. 2013;60:135–42.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Luo J, Chen M, Huang H, Yuan T, Zhang M, et al. Circulating microRNA-122a as a diagnostic marker for hepatocellular carcinoma. OncoTargets Ther. 2013;6:577–83.Google Scholar
  29. 29.
    Liu AM, Yao TJ, Wang W, Wong KF, Lee NP, et al. Circulating miR-15b and miR-130b in serum as potential markers for detecting hepatocellular carcinoma: a retrospective cohort study. BMJ Open. 2012;2:e000825.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, et al. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. Jama. 2007;297:1901–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Minna E, Romeo P, De Cecco L, Dugo M, Cassinelli G, et al. miR-199a-3p displays tumor suppressor functions in papillary thyroid carcinoma. Oncotarget. 2014;5:2513–28.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wan D, He S, Xie B, Xu G, Gu W, et al. Aberrant expression of miR-199a-3p and its clinical significance in colorectal cancers. Med Oncol. 2013;30:378.CrossRefPubMedGoogle Scholar
  33. 33.
    Naugler WE, Schwartz JM. Hepatocellular carcinoma. Dis-a-Month: DM. 2008;54:432–44.CrossRefGoogle Scholar
  34. 34.
    Sanyal AJ, Yoon SK, Lencioni R. The etiology of hepatocellular carcinoma and consequences for treatment. Oncologist. 2010;15 Suppl 4:14–22.CrossRefPubMedGoogle Scholar
  35. 35.
    Trinchet JC, Chaffaut C, Bourcier V, Degos F, Henrion J, et al. Ultrasonographic surveillance of hepatocellular carcinoma in cirrhosis: a randomized trial comparing 3- and 6-month periodicities. Hepatology. 2011;54:1987–97.CrossRefPubMedGoogle Scholar
  36. 36.
    Aghoram R, Cai P, Dickinson JA. Alpha-foetoprotein and/or liver ultrasonography for screening of hepatocellular carcinoma in patients with chronic hepatitis B. Cochrane Database Syst Rev. 2012;9, CD002799.Google Scholar
  37. 37.
    He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Gen. 2004;5:522–31.CrossRefGoogle Scholar
  38. 38.
    Geng Q, Fan T, Zhang B, Wang W, Xu Y, et al. Five microRNAs in plasma as novel biomarkers for screening of early-stage non-small cell lung cancer. Respir Res. 2014;15:149.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432:226–30.CrossRefPubMedGoogle Scholar
  40. 40.
    Zhou J, Song S, He S, Zhu X, Zhang Y, et al. MicroRNA-375 targets PDK1 in pancreatic carcinoma and suppresses cell growth through the Akt signaling pathway. Int J Mol Med. 2014;33:950–6.PubMedGoogle Scholar
  41. 41.
    He XX, Chang Y, Meng FY, Wang MY, Xie QH, et al. MicroRNA-375 targets AEG-1 in hepatocellular carcinoma and suppresses liver cancer cell growth in vitro and in vivo. Oncogene. 2012;31:3357–69.CrossRefPubMedGoogle Scholar
  42. 42.
    Ding L, Xu Y, Zhang W, Deng Y, Si M, et al. MiR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res. 2010;20:784–93.CrossRefPubMedGoogle Scholar
  43. 43.
    Mathe EA, Nguyen GH, Bowman ED, Zhao Y, Budhu A, et al. MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: associations with survival. Clin Cancer Res: Off J Am Assoc Cancer Res. 2009;15:6192–200.CrossRefGoogle Scholar
  44. 44.
    de Souza Rocha Simonini P, Breiling A, Gupta N, Malekpour M, Youns M, et al. Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells. Cancer Res. 2010;70:9175–84.CrossRefPubMedGoogle Scholar
  45. 45.
    Yu H, Jiang L, Sun C, Li Guo L, Lin M, et al. Decreased circulating miR-375: a potential biomarker for patients with non-small-cell lung cancer. Gene. 2014;534:60–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Shao Y, Geng Y, Gu W, Huang J, Ning Z, et al. Prognostic significance of microRNA-375 downregulation in solid tumors: a meta-analysis. Dis Markers. 2014;2014:626185.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wu C, Li M, Hu C, Duan H. Clinical significance of serum miR-223, miR-25 and miR-375 in patients with esophageal squamous cell carcinoma. Mol Biol Rep. 2014;41:1257–66.CrossRefPubMedGoogle Scholar
  48. 48.
    Chang C, Shi H, Wang C, Wang J, Geng N, et al. Correlation of microRNA-375 downregulation with unfavorable clinical outcome of patients with glioma. Neurosci Lett. 2012;531:204–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Li J, Li X, Li Y, Yang H, Wang L, et al. Cell-specific detection of miR-375 downregulation for predicting the prognosis of esophageal squamous cell carcinoma by miRNA in situ hybridization. PLoS One. 2013;8:e53582.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kong KL, Kwong DL, Chan TH, Law SY, Chen L, et al. MicroRNA-375 inhibits tumour growth and metastasis in oesophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor. Gut. 2012;61:33–42.CrossRefPubMedGoogle Scholar
  51. 51.
    Hu A, Huang JJ, Xu WH, Jin XJ, Li JP, et al. miR-21 and miR-375 microRNAs as candidate diagnostic biomarkers in squamous cell carcinoma of the larynx: association with patient survival. Am J Transl Res. 2014;6:604–13.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Jiang J, Gusev Y, Aderca I, Mettler TA, Nagorney DM, et al. Association of MicroRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin Cancer Res: Off J Am Assoc Cancer Res. 2008;14:419–27.CrossRefGoogle Scholar
  53. 53.
    Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer. 2009;125:345–52.CrossRefPubMedGoogle Scholar
  54. 54.
    Fornari F, Milazzo M, Chieco P, Negrini M, Calin GA, et al. MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2010;70:5184–93.CrossRefPubMedGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Jian Yin
    • 1
  • Peng Hou
    • 1
  • Zhiqiang Wu
    • 1
  • Tao Wang
    • 1
  • Yanxiao Nie
    • 1
  1. 1.Department of GastroenterologyThe First Affiliated to Chinese PLA General HospitalBeijingChina

Personalised recommendations