Tumor Biology

, Volume 36, Issue 6, pp 4487–4494 | Cite as

MicroRNA-10b and minichromosome maintenance complex component 5 gene as prognostic biomarkers in breast cancer

  • Sanaa Eissa
  • Marwa Matboli
  • Hanan H. Shehata
  • Nada O. E. Essawy
Research Article


The aim of this study is to identify micro-ribonucleic acid (microRNA) and its target, in addition to their relationship to the outcome in breast cancer (BC). To achieve this aim, we investigated microRNA-10b (miR-10b) and minichromosome maintenance complex component 5 (MCM5 mRNA) expression in 230 breast tissue samples by real-time PCR and semiquantitative conventional RT-PCR, respectively. Relapse-free survival (RFS) associated with miRNA-10b and MCM5 mRNA were tested by Kaplan–Meier survival analysis. The impact of miRNA-10b andMCM5 mRNA expression on the survival was evaluated by Cox proportional hazard regression model. The expression of miRNA-10b and MCM5 mRNA was positive in 86.4 and 79.7 % breast cancer patients, respectively. The overall concordance rate between miRNA-10b and MCM5 RNA was 90.4 %. The median follow-up period was 50 months. The survival analysis showed that high levels of both miR-10b and MCM5 were associated with short relapse free survival of BC. We identified MCM5 mRNA expression changes consistent with the miRNA-10b target regulation. Thus, we could consider miRNA-10b and MCM5 mRNA as prognostic markers and potential therapeutic targets in breast cancer to be applied to other patient data sets.


miRNA-10b Prognostic biomarker Breast cancer MCM5 Database Bioinformatics 



Micro-ribonucleic acids


Minichromosome maintenance complex component 5


Breast cancer


Body mass index


Lymph node


Estrogen receptor


Progesterone receptor

Her-2 neu

Human epidermal growth factor receptor 2


Invasive duct carcinoma


Invasive lobular carcinoma


Oral contraceptive therapy


Hormonal therapy



This work was supported by Ain Shams University Research Projects 2014-15. Authors are grateful to Professor Fateen Anous, professor of surgery, Ain Shams University, for kindly providing surgical samples and patients data.

Conflicts of interest


Supplementary material

13277_2015_3090_MOESM1_ESM.docx (636 kb)
ESM 1 (DOCX 636 kb)


  1. 1.
    Cava C, Bertoli G, Ripamonti M, Mauri G, Zoppis I, Della Rosa PA, et al. Integration of mRNA expression profile, copy number alterations, and microRNA expression levels in breast cancer to improve grade definition. PLoS One. 2014;9(5):e97681. doi: 10.1371/journal.pone.0097681. eCollection 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Liu Z, Zhang XS, Zhang S. Breast tumor subgroups reveal diverse clinical prognostic power. Sci Rep. 2014;4:4002. doi: 10.1038/srep04002.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8. Note: Erratum: Nature 455: 256 only, 2008.CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang JJ, Zhao Y, Chait BT, Lathem WW, Ritzi M, Knippers R, Darnell JE. Ser727-dependent recruitment of MCM5 by Stat1alpha in IFN-gamma-induced transcriptional activation. EMBO J. 1998.Google Scholar
  5. 5.
    Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov. 2010;9(10):775–89. doi: 10.1038/nrd3179.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Negrini M, Ferracin M, Sabbioni S, Croce CM. MicroRNAs in humancancer: from research to therapy. J Cell Sci. 2007;120:1833–40.CrossRefPubMedGoogle Scholar
  7. 7.
    Ben-Hamo R, Efroni S. MicroRNA-gene association as a prognostic biomarker in cancer exposes disease mechanisms. PLoSComput Biol. 2013;9(11):e1003351. doi: 10.1371/journal.pcbi.1003351.Google Scholar
  8. 8.
    Pinder SE, Elston CW, Ellis IO. Invasive carcinoma: usual histological types. In: Elston CW, Ellis IO, editors. The Breast. 3rd ed. Edinburgh: Churchill Livingstone; 1998. p. 283–337.Google Scholar
  9. 9.
    Sobin L, Gospodarowicz M, Wittekind C, editors. TNM classification of malignant tumors. 7th ed. Hoboken: John Wiley & Sons, Inc.; 2009.Google Scholar
  10. 10.
    World Health Organization. International histological classification of tumours. 2nd ed. Geneva: World Health Organization, 1969–1981; Berlin: Springer-Verlag, 1988–Present.Google Scholar
  11. 11.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta deltaC(T)) method. Methods. 2001;25:402–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C, Dalamagas T, Hatzigeorgiou AG. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W169-73. Available at 2013.
  13. 13.
    Smith SD, Wheeler MA, Plescia J, Colberg JW, Weiss RM, Altieri DC. Urine detection of survivin and diagnosis of breast cancer. JAMA J. 2001;285(3):324–8.CrossRefGoogle Scholar
  14. 14.
    Meadus WJ. A semi-quantitative RT-PCR method to measure the in vivo effect of dietary conjugated linoleic acid on porcine muscle PPAR gene expression. Biol Proced Online. 2003;5:20.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hayes DF, Isaacs C, Stearns V. Prognostic factors in breast cancer: current and new predictors of metastasis. Journal of Mammary Gland Biology and Neoplasia. 2009;6(4):375–92.CrossRefGoogle Scholar
  16. 16.
    Eo HS, Heo JY, Choi Y, Hwang Y, Choi HS. A pathway-based classification of breast cancer integrating data on differentially expressed genes, copy number variations and microRNA target genes. Molecules and Cells. 2012;34(4):393–8.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Adam L, Zhong M, Choi W, Qi W, Nicoloso M, Arora A, et al. Clin Cancer Res. 2009;15:5060–72.CrossRefPubMedGoogle Scholar
  18. 18.
    Negrini M, Calin GA. Breast cancer metastasis: a microRNA story. Breast Cancer Res. 2008;10:203.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Haque I, Banerjee S, Mehta S, De A, Majumder M, Mayo MS, et al. Cysteine-rich 61-connective tissue growth factor-nephroblastoma-overexpressed 5 (CCN5)/Wnt-1-induced signaling protein-2 (WISP-2) regulates microRNA-10b via hypoxia-inducible factor-1α-TWIST signaling networks in human breast cancer cells. J Biol Chem. 2011;286(50):43475–85. doi: 10.1074/jbc.M111.284158.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ma L, Reinhardt F, Pan E, Soutschek J, Bhat B, Marcusson EG, et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol. 2010;28:341–7.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chen W, Cai F, Zhang B, Barekati Z, Zhong XY. The level of circulating miRNA-10b and miRNA-373 in detecting lymph node metastasis of breast cancer: potential biomarkers. Tumour Biol. 2013;34(1):455–62. doi: 10.1007/s13277-012-0570-5.CrossRefPubMedGoogle Scholar
  22. 22.
    Quinn CM, Wright NA. The clinical assessment of proliferation and growth in human tumours: evaluation of methods and applications as prognostic variables. J Pathol. 1990;160:93–102.CrossRefPubMedGoogle Scholar
  23. 23.
    Stoeber K, Tlsty TD, Happerfield L, Thomas GA, Romanov S, Bobrow L, et al. DNA replication licensing and human cell proliferation. J Cell Sci. 2001;114(Pt 11):2027–41.PubMedGoogle Scholar
  24. 24.
    Freeman A, Morris LS, Mills AD, Stoeber K, Laskey RA, Williams GH, et al. Minichromosome maintenance proteins as biological markers of dysplasia and malignancy. Clin Cancer Res. 1999;5:2121–32.PubMedGoogle Scholar
  25. 25.
    Del Pino M, Svanholm-Barrie C, Torné A, Marimon L, Gaber J, Sagasta A, et al. mRNA biomarker detection in liquid-based cytology: a new approach in the prevention of cervical cancer. Mod Pathol. 2014. doi: 10.1038/modpathol.2014.106.Google Scholar
  26. 26.
    de Wit M, Kant H, Piersma SR, Pham TV, Mongera S, van Berkel MP, et al. Colorectal cancer candidate biomarkers identified by tissue secretome proteome profiling. J Proteomics. 2014;99:26–39. doi: 10.1016/j.jprot.2014.01.001.CrossRefPubMedGoogle Scholar
  27. 27.
    Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A. 2008;105(5):1608–13. doi: 10.1073/pnas.0707594105.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Society of Oncology and BioMarkers (ISOBM) 2015

Authors and Affiliations

  • Sanaa Eissa
    • 1
  • Marwa Matboli
    • 1
  • Hanan H. Shehata
    • 1
  • Nada O. E. Essawy
    • 2
  1. 1.Oncology Diagnostic Unit, Medical Biochemistry and Molecular biology Department, Faculty of MedicineAin Shams UniversityCairoEgypt
  2. 2.MSc. Pharmacogenetics and Stratified MedicineUniversity College LondonLondonUK

Personalised recommendations